Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội

Nội dung Đề Olympic lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Ứng Hòa Hà Nội Đề thi Olympic Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Ứng Hòa Hà Nội Chào mừng các thầy cô giáo và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi Olympic môn Toán lớp 8 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày thứ Năm, 14 tháng 04 năm 2022. Đề thi có đề bài đa dạng và thú vị, hãy thử sức và cùng nhau giải quyết nhé! Dưới đây là một số câu hỏi mẫu trong đề thi: Đề bài: Một chiếc thuyền khởi hành từ bến sông A, sau đó 5 giờ 20 phút một chiếc ca nô cũng chạy từ bến sông A đuổi theo và gặp thuyền tại một điểm cách A 20km. Tính vận tốc của thuyền? Biết rằng ca nô chạy nhanh hơn thuyền 12km/h. Đề bài: Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm. 1) Chứng minh CHA' đồng dạng AHC'. 2) Tính tổng HA' HB' HC' AA' BB' CC'. 3) Gọi AI là phân giác trong của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN.IC.AM. Đề bài: Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi. Hy vọng rằng các em sẽ rèn luyện kỹ năng giải toán thông qua đề thi này và có kết quả tuyệt vời. Chúc các bạn thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Như Thanh - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Như Thanh – Thanh Hoá : + Cho biểu thức A. Rút gọn A và tìm số nguyên x để A chia hết cho 2. Cho các số thực a, b, c đôi một khác nhau thỏa mãn: a3 + b3 + c3 = 3abc và abc khác 0. Tính giá trị của biểu thức P. + Tìm cặp số nguyên (x;y) thỏa mãn phương trình: x3 + 3x = x2y + 2y + 5. Cho x; y là các số nguyên khác 0; 1; -1 và x + y chia hết cho xy. Chứng minh rằng x3 + 1 không chia hết cho y. + Cho tứ giác ABCD. Gọi E, I lần lượt là trung điểm của AC và BC; M là điểm đối xứng với I qua E. 1. Chứng minh tứ giác ABIM là hình bình hành. 2. Gọi N, F lần lượt là trung điểm của AD và BD; K là điểm đối xứng với I qua F. Chứng minh ba đường thẳng IN; MF; KE đồng quy. 3. Gọi O là giao hai đường chéo AC và BD. Kí hiệu: S; S1; S2 lần lượt là diện tích tứ giác ABCD, tam giác AOB và tam giác COD. Biết S1 = a2; S2 = b2 với a, b là các số dương cho trước. Tìm điều kiện của tứ giác ABCD để S = (a + b)2.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Yên Bình - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái (đề chính thức và đề dự bị); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 28 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Bình – Yên Bái : + Tìm giá trị nhỏ nhất của biểu thức: A = 2×2 + 3x – 4. + Tìm các số nguyên x, y thỏa mãn: 2xy + 3x – 5y = 9. + Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt đường thẳng BC tại P và R, cắt đường thẳng CD tại Q và S. a. Chứng minh ∆AQR và ∆APS là các tam giác cân. b. QR cắt PS tại H; M, N lần lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c. Chứng minh P là trực tâm ∆SQR. d. Chứng minh MN là đường trung trực của AC. e. Chứng minh bốn điểm M, B, N, D thẳng hàng.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Nguyễn Bá Ngọc - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội tuyển học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 trường THCS Nguyễn Bá Ngọc, huyện Quảng Xương, tỉnh Thanh Hoá; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Nguyễn Bá Ngọc – Thanh Hoá : + Tìm đa thức f(x) biết rằng: f(x) chia cho x + 2 dư 10, f(x) chia cho x – 2 dư 22, f(x) chia cho x2 – 4 được thương là –5x và còn dư. + Cho 2 số tự nhiên a, b thỏa mãn: 2a2 + a = 3b2 + b. Chứng minh rằng 2a + 2b + 1 là số chính phương. + Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S. a) Chứng minh tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H; M, N là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh P là trực tâm tam giác SQR. d) Chứng minh bốn điểm M, B, N, D thẳng hàng.
10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung HK1)
Tài liệu gồm 10 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập 10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung học kỳ 1); các đề được biên soạn bám sát cấu trúc đề thi chọn HSG Toán 8 của sở Giáo dục và Đào tạo tỉnh Thái Bình. Trích dẫn 10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung HK1): + Cho hình thang vuông ABCD vuông tại A và D có CD AB 2. Gọi H là hình chiếu của điểm D trên đường chéo AC, M là trung điểm của đoạn HC. Chứng minh rằng BMD 90. + Cho tam giác ABC, điểm M thuộc cạnh BC, gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng của M qua AC. Vẽ hình bình hành MDNE. Chứng minh AN song song với BC. + Chứng minh rằng trong 5 số nguyên dương bất kỳ, tồn tại một số chia hết cho 5 hoặc một vài số có tổng chia hết cho 5.