Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Anh Sơn 3 - Nghệ An

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Anh Sơn 3, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Anh Sơn 3 – Nghệ An : + Để gây quỹ cho chương trình Tết yêu thương, một trường THPT tổ chức cho các lớp gói bánh chưng và bánh tét. Mỗi lớp được sử dụng tối đa 10kg gạo nếp, 1kg thịt và 1,6kg đậu xanh. Để gói 1 cái bánh chưng cần 0,5kg gạo nếp, 0,05kg thịt và 0,1kg đậu xanh. Để gói 1 cái bánh tét cần 0,75kg gạo nếp, 0,075kg thịt và 0,1kg đậu xanh. Mỗi cái bánh chưng bán được 30 ngàn đồng, mỗi cái bánh tét bán được 40 ngàn đồng. Để thu được số tiền nhiều nhất, mỗi lớp cần gói bao nhiêu cái bánh chưng, bao nhiêu cái bánh tét? + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm 23M là trung điểm của cạnh AB điểm 15H và điểm 59K lần lượt là chân đường cao kẻ từ C và B, điểm D thuộc đường thẳng 210xy sao cho tam giác BCD cân tại C. Tìm tọa độ các điểm C và D biết rằng điểm B có hoành độ âm. + Cho tam giác ABC. Trên các cạnh BC, CA và AB của tam giác đó, lần lượt lấy các điểm A B và C. Gọi aS bS cS và S tương ứng là diện tích của các tam giác ABC BCA CAB và ABC. Chứng minh bất đẳng thức 32abcS. Dấu đẳng thức xảy ra khi và chỉ khi nào?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 năm 2021 - 2022 cụm THPT huyện Lục Nam - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi cấp cơ sở môn Toán lớp 10 năm học 2021 – 2022 cụm THPT huyện Lục Nam, tỉnh Bắc Giang; đề thi gồm 40 câu trắc nghiệm (14 điểm) và 03 câu tự luận (06 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề thi HSG Toán 10 năm 2021 – 2022 cụm THPT huyện Lục Nam – Bắc Giang : + Một cửa hàng bán đồ nam ở TT Bích Động gồm áo sơ mi, quần âu và áo phông. Ngày thứ nhất bán được 22 áo sơ mi, 12 quần âu và 18 áo phông, doanh thu là 12580000 đồng. Ngày thứ hai bán được 16 áo sơ mi, 10 quần âu và 20 áo phông, doanh thu là 10800000 đồng. Ngày thứ ba bán được 24 áo sơ mi, 15 quần âu và 12 áo phông, doanh thu là 12960000 đồng. Hỏi giá bán mỗi áo sơ mi, mỗi quần âu và mỗi áo phông là bao nhiêu? Biết giá từng loại trong ba ngày không thay đổi. A. 250000 đồng/áo sơ mi, 320000 đồng/quần âu, 180000 đồng/áo phông. B. 260000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. C. 250000 đồng/áo sơ mi, 330000 đồng/quần âu, 170000 đồng/áo phông. D. 200000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. + Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10 / 2019 , giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20 h30 ; là 6 triệu đồng cho 15 giây/l lần quảng cáo vào khung giờ 16h00 -17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20 h30 và không quá 50 lần quảng cáo vào khung giờ 16 h00 17 h00  . Tổng số lần xuất hiện quảng cáo của công ty trên VTV1 nhiều nhất là bao nhiêu? + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng 1. Trên các cạnh BC CA AB lần lượt lấy các điểm N M P sao cho 1 3 BN 2 3 CM AP x với 0 1 x. Biết rằng có hai giá trị của x để đường thẳng AN tạo với đường thẳng PM một góc 60, tính tổng của hai giá trị đó. + Cho tam giác ABC vuông tại A. Gọi là góc giữa hai đường trung tuyến BD và CK. Tìm giá trị nhỏ nhất của cos. + Cho tam giác ABC thỏa mãn AB AC 24 và sin sin sin cos cos B C A B C. Gọi M là trung điểm của cạnh BC và G là trọng tâm của tam giác ABC. Tìm diện tích tam giác MBG.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Cho parabol 2 P y x bx c (b c là các tham số thực). a) Tìm giá trị của b c biết parabol P đi qua điểm M(3;2)  và có trục đối xứng là đường thẳng x 1. b) Với giá trị của b c tìm được ở câu a, tìm m để đường thẳng d y x m cắt parabol P tại hai điểm phân biệt AB sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Trong mặt phẳng tọa độ Oxy, cho hai điểm A và B. Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. + Cho ba số thực x y z thỏa mãn x y z 1 1 1 và 1 1 1 2 x y z. Tìm giá trị lớn nhất của biểu thức A x y z 1 1 1.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.