Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán lớp 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Yên Phong, tỉnh Bắc Ninh. Kỳ thi sẽ diễn ra vào ngày 14 tháng 01 năm 2023. Đề thi bao gồm các câu hỏi sau: Xác định các số \( a \) và \( b \) sao cho đa thức \( x^3 + ax + b \) chia cho đa thức \( x + 1 \) có dư là 7, chia cho đa thức \( x - 3 \) có dư là -5. Tìm \( x \) thỏa mãn \( (x^2 - 4x)^2 + 2(x - 2)^2 = 43 \). Tìm tất cả các số nguyên \( x \), \( y \) sao cho \( (y + 2)x^2 + 1 = y^2 \). Tìm tất cả các số nguyên dương \( n \) sao cho số \( 9n + 11 \) viết được dưới dạng tích của \( k \) số tự nhiên liên tiếp với \( k \geq 2 \). Cho tam giác \( ABC \) sao cho \( AB < AC \). Vẽ ra phía ngoài tam giác \( ABC \) các hình vuông \( ABDE \), \( ACGH \). Chứng minh \( BH = EC \). Vẽ hình bình hành \( AEFH \). Chứng minh rằng \( AF \) vuông góc với \( BC \). Gọi \( O \) là giao điểm của các đường trung trực của tam giác \( ABC \), \( M \) và \( N \) lần lượt là trung điểm của \( EH \) và \( BC \), biết \( OH = OE \). Chứng minh tứ giác \( AMON \) là hình bình hành và tính góc \( BOC \). Hy vọng rằng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi Học sinh giỏi môn Toán sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.
Đề Khảo Sát Chọn HSG Toán 8 Phòng GD&ĐT Hải Hậu 2022-2023 Có Đáp Án
10 Đề Khảo Sát Học Sinh Giỏi Toán 8 Huyện Hải Lăng Có Đáp Án
Tuyển chọn 100 đề thi học sinh giỏi môn toán 8