Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán cực trị hình học trong không gian - Quách Đăng Thăng

Tài liệu gồm 20 trang hướng dẫn phương pháp giải bài toán cực trị hình học không gian thông qua các ví dụ có lời giải chi tiết. Tài liệu sáng kiến kinh nghiệm của thầy Quách Đăng Thăng trình bày phương pháp về các bài toán cực trị hình học trong không gian như: Tìm điểm, tìm độ dài để thể tích đa diện, độ dài đoạn thẳng đạt lớn nhất, nhỏ nhất. Thực tế giảng dạy cho thấy môn Toán học trong trường phổ thông là một trong những môn học khó, phần lớn các em học môn Toán rất yếu đặc biệt là hình học không gian, nếu không có những bài giảng và phương pháp dạy môn Hình học phù hợp đối với thế hệ học sinh thì dễ làm cho học sinh thụ động trong việc tiếp thu, cảm nhận. Đã có hiện tượng một số bộ phận học sinh không muốn học Hình học, ngày càng xa rời với giá trị thực tiễn của Hình học. Nhiều giáo viên chưa quan tâm đúng mức đối tượng giáo dục, chưa đặt ra cho mình nhiệm vụ và trách nhiệm nghiên cứu, hiện tượng dùng đồng loạt cùng một cách dạy, một bài giảng cho nhiều lớp, nhiều thế hệ học trò vẫn còn nhiều. Do đó phương pháp ít có tiến bộ mà người giáo viên đã trở thành người cảm nhận, truyền thụ tri thức một chiều, còn học sinh không chủ động trong quá trình lĩnh hội tri thức – kiến thức Hình học làm cho học sinh không thích học môn Hình học. [ads] Tuy nhiên với việc đại số hóa hình học thì các bài toán hình học không gian trở lên đơn giản và dễ nhìn hơn. Gần đây trong các đề thi Đại học hàng năm đã bắt đầu xuất hiện các bài toán cực trị hình học trong không gian mà đôi khi việc giải các bài toán này một cách trực tiếp bằng kiến thức hình học không gian thuần tuy là vô cùng khó khăn. Chính vì lý do đó tôi chọn đề tài Bài toán cực trị hình học trong không gian. Trong phạm vi bài viết này, với mong muốn giúp các e có thêm một tài liệu ôn thi Đại học – Cao đẳng và đồng thời để các e hiểu được rằng bài toán cực trị nói chung và bài toán cực trị trong hình học không gian không phải là quá khó không thể giải quyết được. Đối tượng áp dụng chủ yếu cho tài liệu này về cơ bản là trên lớp 12A2, ngoài ra tôi cũng đan xen trong các tiết học của các lớp 12A6 và 12A8. Đối tượng nghiên cứu là các tài liệu sách giáo khoa Hình học 12, sách bài tập Hình học 12 cơ bản và nâng cao, các bài giảng trên mạng Internet, các tài liệu và forum trên các diễn đàn Toán học trên mạng Internet cùng một số tài liệu tham khảo khác.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán về góc trong hình học không gian - Trần Đình Cư
Tài liệu gồm 23 trang trình bày các dạng toán về góc, phương pháp giải và bài tập trắc nghiệm có đáp án và lời giải chi tiết. 3 dạng toán về góc trong hình học không gian gồm: + Dạng 1. Góc giữa hai mặt phẳng + Dạng 2. Góc giữa hai đường thẳng + Dạng 3. Góc giữa đường thẳng và mặt phẳng [ads] Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại AD, với AB = 3a, AD = 2a, DC = a. Hình chiếu vuông góc của S xuống mặt phẳng (ABCD) là H thuộc AB với AH = 2HB. Biết SH = 2a, cosin của góc giữa SB và AC là? + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, góc A = 60 độ. Chân đường vuông góc hạ từ B’ xuống mặt phẳng (ABCD) trùng với giao điểm của hai đường chéo của đáy ABCD. Cho BB’ = a.Tính góc giữa cạnh bên và đáy. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, CD = 2a, AD = AB = a. Hình chiếu vuông góc của S trên mặt đáy là trung điểm H của đoạn AB. Khoảng cách từ điểm H đến mặt phẳng (SCD) bằng a√2/3. Tan của góc giữa đường thẳng BC và mặt phẳng (SCD) bằng? + Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B có AB = BC = a; SA ⊥ (ABC). Biết mặt phẳng (SBC) tạo với đáy một góc 60 độ. Cosin góc tạo bởi đường thẳng SC và mặt phẳng (ABC) là? + Cho khối chóp S.ABC có đáy là tam giác cân tại A có AB = AC = 4a, góc BAC = 120 độ. Gọi M là trung điểm của BC, N là trung điểm của AB, ΔSAM là tam giác cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết SA = a√2. Góc giữa SN và mặt phẳng (ABC) là?
Các dạng toán khoảng cách trong hình học không gian - Trần Đình Cư
Tài liệu gồm 70 trang trình bày các dạng toán tính khoảng cách trong hình học không gian, phương pháp giải và bài tập trắc nghiệm có lời giải cho tiết. + DẠNG 1. KHOẢNG CÁCH TỪ 1 ĐIỂM ĐẾN ĐƯỜNG THẲNG Việc dựng hình chiếu của một điểm trên đường thẳng trong không gian, ta có thể làm theo 2 cách sau: + Dựng mặt phẳng đi qua điểm và đường thẳng đã cho. Rồi trên mặt phẳng đó qua điểm đã cho dựng đoạn vuông góc từ điểm tới đường thẳng. + Dựng một mặt phẳng đi qua điểm đã cho và vuông góc với đường thẳng, lúc đó giao điểm của đường thẳng với mặt phẳng vừa dựng chính là hình chiếu của điểm trên đường thẳng. Sau khi đã xác định được khoảng cách cần tính, ta dùng các hệ thức lượng trong tam giác, đa giác, đường tròn … để tính toán. [ads] + DẠNG 2. KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MẶT PHẲNG + DẠNG 3. KHOẢNG CÁCH GIỮA HAI MẶT PHẲNG SONG SONG Việc tính khoảng cách giữa một đường thẳng và một mặt phẳng song song với nó, hoặc tính khoảng cách giữa hai mặt phẳng song song đều quy về việc tính khoảng cách từ điểm đến mặt phẳng. Cần lưu ý việc chọn điểm trên đường hoặc trên mặt sao cho việc xác định khoảng cách được đơn giản nhất. + DẠNG 4. KHOẢNG CÁCH HAI ĐƯỜNG THẲNG CHÉO NHAU
Lý thuyết khối đa diện - Trần Đình Cư
Tài liệu gồm 26 trang gồm lý thuyết, các dạng toán và bài tập trắc nghiệm có lời giải chi tiết chuyên đề khối đa diện trong chương trình Hình học 12 chương 1. DẠNG 1. KHÁI NIỆM KHỐI ĐA DIỆN I. KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN 1. Khái niệm về hình đa diện Hình đa diện (gọi tắt là đa diện) (H) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai tính chất trên. Mỗi đa giác như thế được gọi là các mặt của đa diện. Các đỉnh các cạnh của đa giác ấy theo thứ tự được gọi là các đỉnh, cạnh của đa diện. 2. Khái niệm về khối đa diện Khối đa diện là phần không gian được giới hạn bới một hình đa diện (H), kể cả hình đa diện đó. Những điểm không thuộc khối đa diện được gọi là điểm ngoài của khối đa diện. Những điểm thuộc khối đa diện nhưng không thuộc hình đa diện giới hạn khối đa diện ấy được gọi là điểm trong của khối đa diện. Tập hợp các điểm trong được gọi là miền trong, tập hợp các điểm ngoài được gọi là miền ngoài khối đa diện. [ads] II. HAI HÌNH BẲNG NHAU 1. Phép dời hình trong không gian và sự bằng nhau giữa các khối đa diện + Trong không gian quy tắc đặt tương ứng mỗi điểm M với điểm M’ xác định duy nhất được gọi là một phép biến hình trong không gian. + Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tùy ý. 2. Hai hình bằng nhau: Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia. DẠNG 2. KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU I. KHỐI ĐA DIỆN LỒI Khối đa diện (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Khi đó đa diện giới hạn (H) được gọi là đa diện lồi. Công thức ƠLE: Trong một đa diện lồi nếu gọi Đ là số đỉnh, C là số cạnh, M là số mặt Đ – C + M = 2. II. KHỐI ĐA DIỆN ĐỀU Khối đa diện đều là khối đa diện lồi có các tính chất sau: + Mỗi mặt của nó là một đa giác đều p cạnh + Mỗi đỉnh của nó là đỉnh chung của đúng q mặt Khối đa diện đều như vậy được gọi là khối đa diện đều loại {p;q}.
Phương pháp phần bù tính thể tích khối đa diện phức tạp - Vương Thanh Bình
Tài liệu gồm 13 trang trình bày tóm tắt lý thuyết và các kiến thức hình học liên quan, các ví dụ mẫu và một số bài tập có lời giải chi tiết phương pháp phần bù tính thể tích khối đa diện phức tạp. Khái niệm khối đa diện phức tạp: Là khối đa diện không cơ bản (không phải chóp tam giác, chóp tứ giác, hình lăng trụ, hình hộp, hình lập phương … ) hoặc cơ bản nhưng khó tính chiều cao và diện tích đáy. Ý tưởng: Ta sẽ xây dựng khối đa diện phức tạp (H) nằm trong khối chóp cơ bản (A). Ví dụ dụ khối chóp (A) gồm khối đa diện phức tạp (H) và khối chóp cơ bản (B) khi đó: VH = VA – VB [ads] Các dạng thường gặp + Dạng 1: (Cơ bản) A = H + B ⇒ VH = VA – VB + Dạng 2: (Nâng cao) A = H + B + C ⇒ VH = VA – VB – VC + Dạng 3: (Rất khó) A = H + B + C + D ⇒ VH = VA – VB – VC – VD Kiến thức liên quan 1. Định lý Talet: Cho tam giác ABC, đường thẳng d song song với BC đồng thời cắt các cạnh AB, AC hoặc các đường kéo dài của 2 cạnh này tại M, N thì ta có tỉ lệ: AM/AN = AB/AC 2. Định lý 3 đường giao tuyến: Cho 3 mặt phẳng (P), (Q), (R) giao nhau theo 3 giao tuyến d1, d2, d3 thì 3 giao tuyến này một là đôi một song song hai là đồng quy. Bài tập vận dụng có lời giải chi tiết