Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 10 môn Toán lần 2 năm học 2017 2018 trường THPT Yên Lạc Vĩnh Phúc

Nội dung Đề thi KSCL lớp 10 môn Toán lần 2 năm học 2017 2018 trường THPT Yên Lạc Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 10 lần 2 năm học 2017 – 2018 trường THPT Yên Lạc – Vĩnh Phúc mã đề 101 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, không kể thời gian giao đề, đề được biên soạn theo “mô-tip” của đề thi THPT Quốc gia, đề thi KSCL Toán lớp 10 có đáp án . Trích dẫn đề thi KSCL Toán lớp 10 : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập chung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27( triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng Arch (tính từ mặt đất đến điểm cao nhất của cổng). [ads] + Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc DA1C1 = 49 độ và góc DB1C1 = 35 độ. Tính chiều cao CD của tháp. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi KSCL lớp 10 môn Toán lần 3 năm 2019 2020 trường THPT Nguyễn Viết Xuân Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 3 năm 2019 2020 trường THPT Nguyễn Viết Xuân Vĩnh Phúc Bản PDF Ngày … tháng 05 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2019 – 2020 lần thi thứ ba, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 (HK2). Đề thi KSCL Toán lớp 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 066 gồm có 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho hai điểm B và C phân biệt. Tập hợp những điểm M thỏa mãn CM.CB = CM^2 thuộc: A. Một đường khác không phải đường tròn. B. Đường tròn (B;BC). C. Đường tròn (C;BC). D. Đường tròn đường kính BC. + Cho hai bất phương trình x^2 – m(m^2 + 1)x + m^4 < 0 (1) và x^2 + 4x + 3 > 0 (2). Các giá trị của tham số m sao cho nghiệm của bất phương trình (1) đều là nghiệm của bất phương trình (2) là? + Cho hệ phương trình: 2x – y = 2 – a và x + 2y = a + 1. Các giá trị thích hợp của tham số a để tổng bình phương hai nghiệm của hệ phương trình đạt giá trị nhỏ nhất? + Cho tam giác ABC, gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Câu nào sau đây đúng? + Gọi H là trực tâm tam giác ABC, phương trình các đường thẳng chứa các cạnh và đường cao tam giác là: AB: 7x – y + 4 = 0; BH: 2x + y – 4 = 0; AH: x – y -2 = 0. Phương trình đường thẳng chứa đường cao CH của tam giác ABC là? File WORD (dành cho quý thầy, cô):
Đề thi chuyên đề lớp 10 môn Toán lần 2 năm 2019 2020 trường Ngô Gia Tự Vĩnh Phúc
Nội dung Đề thi chuyên đề lớp 10 môn Toán lần 2 năm 2019 2020 trường Ngô Gia Tự Vĩnh Phúc Bản PDF Ngày … tháng 01 năm 2019, trường THPT Ngô Gia Tự – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán lớp 10 lần thứ hai năm học 2019 – 2020. Đề thi chuyên đề Toán lớp 10 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc gồm có 02 trang với 12 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chuyên đề Toán lớp 10 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc : + Một công ty Taxi có 85 xe chở khách gồm hai loại: xe chở được 4 khách và xe chở được 7 khách. Nếu dùng tất cả số xe đó, tối đa một lần công ty chở được 445 khách. Số lượng xe mỗi loại là? A. 35 xe 4 chỗ, 50 xe 7 chỗ. B. 40 xe 4 chỗ, 45 xe 7 chỗ. C. 50 xe 4 chỗ, 35 xe 7 chỗ. D. 45 xe 4 chỗ, 40 xe 7 chỗ. [ads] + Cho tam giác ABC, các điểm M, N lần lượt thuộc các cạnh AB, AC sao cho AB = 3AM, 3AC = 4AN. Gọi I là giao điểm của CM và BN. a) Phân tích các vectơ BN, CM theo hai vec tơ AB, AC. b) Tìm k, h thuộc R sao cho IA = kIB + hIC. + Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Trong các khẳng định sau, khẳng định nào sai? A. Hàm số đồng biến trên khoảng (1;3). B. Hàm số nghịch biến trên khoảng (3;4). C. Hàm số nghịch biến trên khoảng (−2;1). D. Hàm số đồng biến trên khoảng (0;3). File WORD (dành cho quý thầy, cô):
Đề thi lớp 10 môn Toán lần 1 năm 2019 2020 trường THPT Thạch Thành 1 Thanh Hóa
Nội dung Đề thi lớp 10 môn Toán lần 1 năm 2019 2020 trường THPT Thạch Thành 1 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi Toán lớp 10 lần 1 năm học 2019 – 2020 trường THPT Thạch Thành 1 – Thanh Hóa, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm kiểm tra khảo sát chất lượng học tập môn Toán của học sinh khối lớp 10. Trích dẫn đề thi Toán lớp 10 lần 1 năm 2019 – 2020 trường THPT Thạch Thành 1 – Thanh Hóa : + Cho hình bình hành ABCD có tâm O, N là trung điểm của cạnh AB, G là trọng tâm tam giác ABC. 1. Chứng minh AB – AC = OA – OD. 2. Tìm điểm M thỏa mãn MA + MB + MC = 4MD. 3. Phân tích vectơ GA theo hai vectơ BD và NC. 4. Biết tam giác ABC là tam giác cân, AB = a và góc ABC = 120 độ. Tính độ dài của vectơ BA + BC theo a. [ads] + Trong mặt phẳng tọa độ Oxy, cho v = 2i + 3j và điểm A(3;-5). 1. Tìm tọa độ của vectơ v. 2. Tìm tọa độ điểm B sao cho AB = v. 3. Tìm tọa độ điểm M thuộc trục hoành sao cho ba điểm A, B, M thẳng hàng. + Lập mệnh đề phủ định của mệnh đề sau và xét tính đúng sai của nó: Mọi hình vuông đều là hình thoi. File WORD (dành cho quý thầy, cô):
Đề thi thử THPTQG 2019 – 2020 lớp 10 môn Toán lần 1 trường Ngô Sĩ Liên – Bắc Giang
Nội dung Đề thi thử THPTQG 2019 – 2020 lớp 10 môn Toán lần 1 trường Ngô Sĩ Liên – Bắc Giang Bản PDF Nhằm giúp các em học sinh khối 10 sớm tiếp cận và rèn luyện kiến thức để hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, trường THPT Ngô Sĩ Liên – Bắc Giang tổ chức kỳ thi thử THPT Quốc gia lần 1 năm học 2019 – 2020 môn Toán lớp 10. Đề thi thử THPTQG 2019 – 2020 Toán lớp 10 lần 1 trường THPT Ngô Sĩ Liên – Bắc Giang mã đề 896, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề nhằm kiểm tra kiến thức Toán lớp 10 đã học, đề thi có đáp án. Trích dẫn đề thi thử THPTQG 2019 – 2020 Toán lớp 10 lần 1 trường Ngô Sĩ Liên – Bắc Giang : + Cho tứ giác ABCD cố định và điểm M di chuyển thỏa mãn |MA + MB + MC| = |MB + MC + MD|. Tập hợp điểm M là: A. đường trung trực của đoạn GG’, với G, G’ lần lượt là trọng tâm tam giác ABC, tam giác BCD. B. đường tròn tâm G, với G là trọng tâm tam giác ABC. C. đường tròn tâm G, với G là trọng tâm tam giác BCD. D. đường trung trực của đoạn GG’, với G, G’ lần lượt là trọng tâm tam giác ABC, tam giác ACD. [ads] + Hai tổ của một lớp 10 có 21 học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn, trong đó có 14 học sinh học giỏi môn Toán, 12 học sinh học giỏi môn Văn. Khi đó hai tổ trên có số học sinh học giỏi cả hai môn Toán và Văn là? + Cho hàm số y = -2x^2 + 8x – 2 có đồ thị là (P). Chọn khẳng định sai? A. (P) đi qua điểm M(-1;-12). B. Giá trị lớn nhất của hàm số bằng 2. C. Trục đối xứng của (P) là đường thẳng x = 2. D. (P) nghịch biến trên (2;+∞). File WORD (dành cho quý thầy, cô):