Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tính nhanh nguyên hàm - tích phân từng phần sử dụng sơ đồ đường chéo - Ngô Quang Chiến

Tài liệu gồm 7 trang hướng dẫn cách tính nhanh nguyên hàm – tích phân từng phần bằng sơ đồ đường chéo do thầy Ngô Quang Chiến biên soạn. Khi mà các đề thi THPT Quốc gia, đề kiểm tra và đề thi học kỳ môn Toán đều chuyển sang dạng bài trắc nghiệm, không yêu cầu trình bày lời giải thì phương pháp này càng cho thấy sự hiệu quả và rút ngắn thời gian làm bài. Phương pháp sơ đồ đường chéo tỏ ra đặc biệt hiệu quả và hữu ích đối với các dạng bài nguyên hàm – tích phân phải sử dụng tích phân từng phần nhiều lần. Nội dung tài liệu : I. NHẮC LẠI KIẾN THỨC 1. Công thức: ∫udv = vu – ∫vdu 2. Áp dụng với các dạng nguyên hàm: ∫p(x).e^(ax + b)dx, ∫p(x).sin(ax + b)dx, ∫p(x).cos(ax + b)dx, ∫p(x).(ln(ax + n))^ndx …. 3. Cách đặt: + Ưu tiên đặt “u” theo: logarit (ln) → đa thức (p(x)) → lượng giác (sinx, cosx) → mũ (e^x) (Nhất log – nhì đa – tam lượng – tứ mũ ) + Phần còn lại là “dv” II. PHƯƠNG PHÁP 1. Chia thành 2 cột + Cột 1 (cột trái: cột u) luôn lấy đạo hàm tới 0 + Cột 2 (cột phải: cột dv) luôn lấy nguyên hàm cho tới khi tương ứng với cột 1 2. Nhân chéo kết quả của hai cột với nhau 3. Dấu của phép nhân đầu tiên sẽ có dấu (+), sau đó đan dấu (-), (+), (-) … [ads] III. PHÂN DẠNG VÀ VÍ DỤ MINH HOẠ 1. Dạng ∫p(x).e^(ax + b)dx 2. Dạng ∫p(x).sin(ax + b)dx, ∫p(x).cos(ax + b)dx 3. Dạng ∫p(x).(ln(ax + n))^ndx Dạng ∫p(x).(ln(ax + n))^ndx thì ưu tiên đặt u = (ln(ax + n))^n vì vậy khi đạo hàm “u” sẽ không bằng 0 được, do vậy cần phải điều chỉnh hệ số rút gọn (nhân ngang → đơn giản tử mẫu) rồi sau đó mới làm tiếp. 4. Dạng 4: Nguyên hàm lặp (tích phân lặp) Nếu khi ta tính nguyên hàm (tích phân) theo sơ đồ đường chéo mà lặp lại nguyên hàm ban đầu cần tính (theo hàng ngang) thì dừng lại luôn ở hàng đó, không tính tiếp nữa. a. Dấu hiệu khi dừng lại: nhận thấy trên cùng 1 hàng ngang tích của 2 phần tử ở 2 cột (không kể dấu và hệ số) giống nguyên hàm ban đầu cần tính. b. Ghi kết quả (nhân theo đường chéo) như các ví dụ trên. c. Nối 2 phần tử (ở dòng dừng lại), có thêm dấu ∫ trước kết quả và coi gạch nối là 1 đường chéo, sử dụng quy tắc đan dấu. IV. BÀI TẬP VẬN DỤNG (sưu tầm và biên soạn)

Nguồn: toanmath.com

Đọc Sách

Giải bài toán nguyên hàm - tích phân dưới sự hỗ trợ của máy tính Casio FX-580 VNX
Tích phân là một trong những chuyên đề hay, có nhiều ứng dụng trong tính toán thực tế. Ngoài ra, tích phân cũng là một chuyên đề thường xuyên xuất hiện trong các đề thi THPT Quốc Gia từ những câu hỏi ở mức độ nhận biết đến các bài vận dụng. Với hình thức thi Trắc nghiệm thì việc sử dụng máy tính thành thạo và hiệu quả giúp học sinh hạn chế tính nhầm, tránh trường hợp sai số đáng tiếc (cấu trúc đề bài có các đáp án nhiễu). Mặt khác tối ưu thời gian làm bài. Trong bài viết này, Diễn đàn máy tính cầm tay sẽ tổng hợp một số hướng giải quyết các dạng toán tiêu biểu của chuyên đề Tích phân trong các đề thi dưới sự hỗ trợ của máy tính Casio fx-580 VNX. Phụ lục: 1. TÌM NGUYÊN HÀM F(x) CỦA HÀM SỐ f(x) CHO TRƯỚC 1. 2. TÌM NGUYÊN HÀM F(x) CỦA HÀM SỐ f(x) CHO TRƯỚC THỎA ĐIỀU KIỆN F(x0) = M 5. 3. XÁC ĐỊNH CÁC ẨN SỐ A, B, C TRONG BÀI TOÁN TÍCH PHÂN 6. 4. ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH MẶT PHẲNG 10. 5. ỨNG DỤNG TÍCH PHÂN ĐỂ TÍNH THỂ TÍCH KHỐI TRÒN XOAY 13. 6. ỨNG DỤNG TÍCH PHÂN ĐỂ GIẢI QUYẾT CÁC BÀI TOÁN THỰC TẾ 18.
Toàn tập nguyên hàm và tích phân cơ bản
Tài liệu gồm 118 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề nguyên hàm và tích phân cơ bản lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Toán 12 phần Giải tích chương 3: Nguyên hàm, tích phân và ứng dụng. Nguyên hàm : + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p1. + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p2. + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p3. + Cơ bản nguyên hàm vô tỷ p1. + Cơ bản nguyên hàm vô tỷ p2. + Cơ bản nguyên hàm hàm số lượng giác p1. + Cơ bản nguyên hàm hàm số lượng giác p2. + Cơ bản nguyên hàm hàm số lượng giác p3. + Cơ bản nguyên hàm hàm số siêu việt p1. + Cơ bản nguyên hàm hàm số siêu việt p2. + Cơ bản nguyên hàm hàm số siêu việt p3. + Cơ bản nguyên hàm từng phần p1. + Cơ bản nguyên hàm từng phần p2. + Cơ bản nguyên hàm từng phần p3. + Tổng hợp cơ bản nguyên hàm p1. + Tổng hợp cơ bản nguyên hàm p2. + Tổng hợp cơ bản nguyên hàm p3. + Tổng hợp cơ bản nguyên hàm p4. + Tổng hợp cơ bản nguyên hàm p5. + Tổng hợp cơ bản nguyên hàm p6. + Tổng hợp cơ bản nguyên hàm p7. + Tổng hợp cơ bản nguyên hàm p8. + Tổng hợp cơ bản nguyên hàm p9. + Tổng hợp cơ bản nguyên hàm p10. + Tổng hợp cơ bản nguyên hàm p11. Tích phân : + Cơ bản tính chất tích phân p1. + Cơ bản tính chất tích phân p2. + Cơ bản tích phân hữu tỷ p1. + Cơ bản tích phân hữu tỷ p2. + Cơ bản tích phân hữu tỷ p3. + Cơ bản tích phân vô tỷ p1. + Cơ bản tích phân vô tỷ p2. + Cơ bản tích phân vô tỷ p3. + Cơ bản tích phân lượng giác p1. + Cơ bản tích phân lượng giác p2. + Cơ bản tích phân siêu việt p1. + Cơ bản tích phân siêu việt p2. + Cơ bản tích phân siêu việt p3. + Cơ bản tích phân từng phần p1. + Cơ bản tích phân từng phần p2. + Cơ bản tích phân từng phần p3. + Tổng hợp cơ bản tích phân p1. + Tổng hợp cơ bản tích phân p2. + Tổng hợp cơ bản tích phân p3. + Tổng hợp cơ bản tích phân p4. + Tổng hợp cơ bản tích phân p5. + Tổng hợp cơ bản tích phân p6. Ứng dụng nguyên hàm, tích phân : + Cơ bản ứng dụng tích phân diện tích p1. + Cơ bản ứng dụng tích phân diện tích p2. + Cơ bản ứng dụng tích phân diện tích p3. + Cơ bản ứng dụng tích phân diện tích p4. + Cơ bản ứng dụng tích phân diện tích p5. + Cơ bản ứng dụng tích phân thể tích p1. + Cơ bản ứng dụng tích phân thể tích p2. + Cơ bản ứng dụng tích phân thể tích p3. + Cơ bản ứng dụng tích phân thể tích p4. + Cơ bản ứng dụng tích phân thể tích p5. + Tổng hợp ứng dụng tích phân p1. + Tổng hợp ứng dụng tích phân p2. + Tổng hợp ứng dụng tích phân p3. + Tổng hợp ứng dụng tích phân p4.
Bất đẳng thức tích phân và một số bài toán liên quan
Tài liệu gồm 19 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán bất đẳng thức tích phân và một số bài toán liên quan, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN Cho các hàm số y f x và y g x có đạo hàm liên tục trên a b. Khi đó: Nếu f x g x với mọi x a b thì b b a a f x dx g x dx. Nếu f x 0 với mọi x a b thì 0 b a f x dx. Hệ quả: 2 0 0 b a f x dx f x. Bất đẳng thức Holder (Cauchy – Schwarz): 2 2 2 b b b a a a f x g x dx f x dx g x dx Đẳng thức xảy ra khi và chỉ khi f x kg x với k. B. BÀI TẬP Cho hàm số y f x có đạo hàm liên tục trên 02 đồng thời thỏa mãn điều kiện f2 2 2 0 xf x dx và 2 2 0 f x dx 10. Hãy tính tích phân 2 2 0 I x f x dx? Cho hàm số y f x có đạo hàm liên tục trên 12 đồng thời thỏa mãn 2 3 1 x f x dx 31. Tìm giá trị nhỏ nhất của tích phân 2 4 1 I f x dx? Cho hàm số y f x nhận giá trị không âm và liên tục trên đoạn 01 đồng thời ta đặt 0 1 x g x f t dt. Biết g x f x với mọi x 0 1. Tích phân 1 0 1 dx g x có giá trị lớn nhất bằng?
Ứng dụng tích phân trong bài toán tính thể tích vật thể với dữ kiện toán thực tế
Tài liệu gồm 25 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán ứng dụng tích phân trong bài toán tính thể tích vật thể với dữ kiện toán thực tế, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Thể tích vật thể Gọi B là phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm a và b; S x là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm x a x b. Giả sử S x là hàm số liên tục trên đoạn a b. Khi đó thể tích của vật thể B được xác định: b a V S x dx. 2. Thể tích khối tròn xoay Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y f x trục hoành và hai đường thẳng x a x b quanh trục Ox: Lưu ý: – Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường x g y trục hoành và hai đường thẳng y c y d quanh trục Oy: c y O d x : : C x g y Oy x 0 y c y d 2 d y c V g y dy : : C y f x Ox y 0 x a x b 2 b x a V f x dx a y f x y O b x b a V S x dx O a b x V S(x) x. Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y f x y g x và hai đường thẳng x a x b quanh trục Ox: 2 2 b a V f x g x dx. B. BÀI TẬP Một bồn hình trụ chứa dầu được đặt nằm ngang, có chiều dài 5m, bán kính đáy 1m, với nắp bồn đặt trên mặt nằm ngang của mặt trụ. Người ta rút dầu trong bồn tương ứng với 0,5m của đường kính đáy. Có một vật thể là hình tròn xoay có dạng giống như một cái ly như hình vẽ dưới đây. Người ta đo được đường kính của miệng ly là 4cm và chiều cao là 6cm. Biết rằng thiết diện của chiếc ly cắt bởi mặt phẳng đối xứng là một parabol. Tính thể tích của vật thể đã cho. Trong một đợt xả lũ, nhà máy thủy điện đã xả lũ trong 40 phút với tốc độ lưu lượng nước tại thời điểm t giây là 3 v t t m s10 500. Hỏi sau thời gian xả lũ trên thì hồ thoát nước của nhà máy đã thoát đi một lượng nước là bao nhiêu?