Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 10 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị

Nội dung Đề thi chọn HSG lớp 10 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị Bản PDF - Nội dung bài viết Đề Thi Chọn Học Sinh Giỏi Toán Lớp 10 Trường THPT Thị Xã Quảng Trị Đề Thi Chọn Học Sinh Giỏi Toán Lớp 10 Trường THPT Thị Xã Quảng Trị Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị đã tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 10 môn Toán năm học 2019 – 2020. Đề thi bao gồm 07 bài toán dạng tự luận, với thời gian làm bài là 180 phút. Đề thi không chỉ có câu hỏi mà còn có lời giải chi tiết và thang điểm để học sinh tham khảo. Một trong những câu hỏi đáng chú ý của đề là: "Cho tam giác ABC có chu vi bằng 20, góc BAC = 60 độ, bán kính đường tròn nội tiếp tam giác bằng 3. Gọi A1, B1, C1 là hình chiếu vuông góc của A, B, C lên BC, CA, AB và M là điểm nằm trong tam giác ABC thỏa mãn ABM = BCM = CAM = φ. Tính cot φ và bán kính đường tròn ngoại tiếp tam giác A1B1C1." Câu hỏi khác như sau: "Cho tam giác ABC có trọng tâm G và điểm E thỏa mãn BE + 3EC = 0. Gọi I là giao điểm của AC và GE, tính tỉ số IA/IC." và "Trong mặt phẳng tọa độ Oxy, hình chữ nhật ABCD có phương trình đường thẳng AB là x – 2y + 1 = 0. Biết đường thẳng BD là x – 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2;1). Hãy tìm tọa độ các đỉnh của hình chữ nhật ABCD." Đề thi chọn HSG Toán lớp 10 trường THPT thị xã Quảng Trị không chỉ giúp học sinh ôn tập kiến thức mà còn đánh giá khả năng làm bài và tư duy logic của học sinh. Chúc các em học sinh đạt kết quả cao trong kỳ thi này!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 10 môn Toán năm 2012 2013 trường THPT Thuận An TT Huế
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm 2012 2013 trường THPT Thuận An TT Huế Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 năm 2012 – 2013 trường THPT Thuận An TT Huế Đề thi học sinh giỏi Toán lớp 10 năm 2012 – 2013 trường THPT Thuận An TT Huế Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 đề thi học sinh giỏi môn Toán năm học 2012 – 2013 của trường THPT Thuận An, tỉnh Thừa Thiên Huế. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho các bài toán. Trích dẫn một số câu hỏi từ đề thi: Cho phương trình \(2mx^2 + mx + m - 2 = 0\), trong đó \(m\) là tham số. Tìm giá trị của \(m\) để phương trình đã cho có một nghiệm. Tìm giá trị của \(m\) để phương trình đã cho có hai nghiệm, với một nghiệm gấp đôi nghiệm còn lại. Cho tam giác \(ABC\). Trên các cạnh \(AB\), \(BC\), \(CA\) lần lượt lấy điểm \(M\), \(N\), \(P\) sao cho \(\dfrac{AM}{AB} = \dfrac{BC}{2}\), \(\dfrac{BN}{BC} = \dfrac{AC}{3}\) và \(\dfrac{CP}{CA} = 2\). Chứng minh rằng hai tam giác \(ABC\) và \(MNP\) có cùng trọng tâm. Gọi \(a\), \(b\), \(c\) là độ dài ba cạnh của tam giác \(abc\), \(h_a\), \(h_b\), \(h_c\) lần lượt là độ dài ba đường cao tương ứng với ba cạnh đó, \(r\) là bán kính đường tròn nội tiếp tam giác đó. Hãy tính công thức liên quan giữa các đại lượng này. Đề thi này rất thú vị và mang tính thách thức cao đối với các em học sinh lớp 10. Hy vọng rằng đề thi và lời giải chi tiết sẽ giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả.
Đề thi KSCL lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Nông Cống 3 Thanh Hóa
Nội dung Đề thi KSCL lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Nông Cống 3 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Nông Cống 3, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 701 – 702 – 703 – 704. Trích dẫn Đề thi KSCL lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Nông Cống 3 – Thanh Hóa : + Một phân xưởng có hai máy đặc chủng A, B sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại 2 lãi 1,6 triệu dồng. Muốn sản xuất 1 tấn sản phẩm loại I dùng máy A trong 3 giờ và máy B trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II dùng máy A trong 1 giờ và máy B trong 1 giờ. Một máy không thể dùng để sản suất đồng thời 2 loại sản phẩm. Máy A làm việc không quá 6 giờ trong một ngày, máy B một ngày chỉ làm việc không quá 4 giờ. Số tiền lãi cao nhất một ngày là? + Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB 40 m CAB CBA 45 70. Vậy sau khi đo đạc và tính toán khoảng cách AC gần nhất với giá trị nào sau đây? + Cho tập hợp A = {đỏ; cam; tím; hồng; lam), B = {lục; hồng, chàm; tím}. Kết quả của phép toán A B là? File WORD (dành cho quý thầy, cô):