Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

16 chuyên đề ôn thi vào môn Toán

Nội dung 16 chuyên đề ôn thi vào môn Toán Bản PDF - Nội dung bài viết Sách Ôn Thi Toán Lớp 10 - 16 Chuyên Đề Sách Ôn Thi Toán Lớp 10 - 16 Chuyên Đề Sytu xin giới thiệu đến quý thầy cô và các em học sinh cuốn sách "16 chuyên đề ôn thi vào lớp 10 môn Toán", với 192 trang bao gồm 9 chuyên đề Đại số và 7 chuyên đề Hình học. Sách được biên soạn bởi các tác giả: Bùi Văn Tuyên và Nguyễn Đức Trường. Phần Đại số bao gồm: Chuyên đề 1: Rút gọn và tính giá trị của biểu thức Chuyên đề 2: Giải phương trình và hệ phương trình bậc nhất hai ẩn Chuyên đề 3: Phương trình bậc hai một ẩn Chuyên đề 4: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình Chuyên đề 5: Hàm số và đồ thị Chuyên đề 6: Chứng minh bất đẳng thức Chuyên đề 7: Giải bất phương trình Chuyên đề 8: Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức Chuyên đề 9: Giải toán có nội dung số học Phần Hình học bao gồm: Chuyên đề 10: Chứng minh các hệ thức hình học Chuyên đề 11: Chứng minh tứ giác nội tiếp và nhiều điểm cùng nằm trên đường tròn Chuyên đề 12: Chứng minh quan hệ tiếp xúc giữa đường thẳng và đường tròn hoặc hai đường tròn Chuyên đề 13: Chứng minh điểm cố định Chuyên đề 14: Các bài tập có nội dung tính toán Chuyên đề 15: Quỹ tích và dựng hình Đây sẽ là nguồn tư liệu hữu ích giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán. Hy vọng sách sẽ giúp đỡ các em hiểu rõ hơn về các chuyên đề và nâng cao kiến thức Toán của mình.

Nguồn: sytu.vn

Đọc Sách

Phân tích bình luận 111 bài toán bất đẳng thức - Nguyễn Công Lợi
Tài liệu gồm có 98 trang được biên soạn bởi tác giả Nguyễn Công Lợi, tuyển chọn và giới thiệu một số bài toán bất đẳng thức hay và khó, cùng với đó là quá trình phân tích để đi đến hình thành lời giải cho bài toán bất đẳng thức đó. Từ các bài toán đó ta sẽ thấy được quá trình phân tích đặc điểm của giả thiết bài toán cũng như bất đẳng thức cần chứng minh, từ đó có những nhận định, định hướng để tìm tòi lời giải và cách trình bày lời giải cho một bài toán bất đẳng thức.
Chuyên đề phương trình nghiệm nguyên
Bài toán phương trình nghiệm nguyên là bài toán thường gặp trong đề thi HSG Toán 8 và đề thi HSG Toán 9, đây là dạng toán yêu cầu tìm tất cả các bộ số nguyên thỏa mãn một phương trình có nhiều ẩn số. Nhằm giúp các em có thể học tốt chủ đề này, THCS. giới thiệu đến các em tài liệu chuyên đề phương trình nghiệm nguyên; tài liệu gồm có 89 trang bao gồm: lý thuyết cần nắm, dạng toán, phương pháp giải, ví dụ mẫu và bài tập rèn luyện có lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề phương trình nghiệm nguyên: A. Kiến thức cần nhớ 1. Giải phương trình nghiệm nguyên. 2. Một số lưu ý khi giải phương trình nghiệm nguyên. Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ … để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. Các phương pháp thường dùng để giải phương trình nghiệm nguyên là: Phương pháp dùng tính chất chia hết; Phương pháp xét số dư từng vế;  Phương pháp sử dụng bất đẳng thức; Phương pháp dùng tính chất của số chính phương; Phương pháp lùi vô hạn, nguyên tắc cực hạn. B. Một số phương pháp giải phương trình nghiệm nguyên I. Phương pháp dùng tính chia hết + Dạng 1: Phát hiện tính chia hết của một ẩn. + Dạng 2: Phương pháp đưa về phương trình ước số. + Dạng 3: Phương pháp tách ra các giá trị nguyên. II. Phương pháp sử dụng tính chẵn lẻ của ẩn hoặc xét số dư từng vế + Dạng 1: Sử dụng tính chẵn lẻ. + Dạng 2: Xét tính chẵn lẻ và xét số dư từng vế. [ads] III. Phương pháp dùng bất đẳng thức + Dạng 1: Sử dụng bất đẳng thức cổ điển. + Dạng 2: Sắp xếp thứ tự các ẩn. + Dạng 3: Chỉ ra nghiệm nguyên. + Dạng 4: Sử dụng điều kiện ∆ ≥ 0 để phương trình bậc hai có nghiệm. IV. Phương pháp dùng tính chất của số chính phương + Dạng 1: Dùng tính chất về chia hết của số chính phương. + Dạng 2: Biến đổi phương trình về dạng trong đó là các đa thức hệ số nguyên là số nguyên dương, k là số tự nhiên. + Dạng 3: Xét các số chính phương liên tiếp. + Dạng 4: Sử dụng điều kiện ∆ là số chính phương. + Dạng 5: Sử dụng tính chất: Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên liên tiếp đó bằng 0. + Dạng 6: Sử dụng tính chất: Nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đều là số chính phương. V. Phương pháp lùi vô hạn, nguyên tắc cực hạn + Dạng 1: Phương pháp lùi vô hạn. + Dạng 2: Nguyên tắc cực hạn.
Chuyên đề số chính phương
Số chính phương được định nghĩa là số bằng bình phương của một số nguyên. Cũng như số nguyên tố, thì bài toán về số chính phương cũng là dạng bài thường gặp trong chương trình Toán học lớp 6 – 7, dành cho học sinh giỏi Toán bậc THCS. Nhằm giúp các em có thể tìm hiểu các dạng toán về số chính phương, THCS. giới thiệu đến các em tài liệu chuyên đề số chính phương. Tài liệu gồm 63 trang giới thiệu 04 dạng toán về số chính phương thường gặp, cùng với đó là phương pháp giải, ví dụ mẫu và bài tập vận dụng (có lời giải chi tiết). Khái quát nội dung tài liệu chuyên đề số chính phương: A. Kiến thức cần nhớ 1. Định nghĩa số chính phương. 2. Một số tính chất cần nhớ. B. Các dạng toán thường gặp Dạng 1 : Chứng minh một số là số chính phương, hoặc là tổng nhiều số chính phương. Cơ sở phương pháp: Để chứng minh một số n là số là số chính phương ta thường dựa vào định nghĩa. [ads] Dạng 2 : Chứng minh một số không là số chính phương. Cơ sở phương pháp: Để chứng minh n không là số chính phương, tùy vào từng bài toán ta có thể sử dụng các cách sau: + Phương pháp 1. Chứng minh n không thể viết được dưới dạng một bình phương một số nguyên. + Phương pháp 2. Chứng minh k2 < n < (k + 1)2 với k là số nguyên. + Phương pháp 3. Chứng minh n có tận cùng là 2; 3; 7; 8. + Phương pháp 4. Chứng minh n có dạng 4k + 2; 4k + 3. + Phương pháp 5. Chứng minh n có dạng 3k + 2. + Phương pháp 6. Chứng minh n chia hết cho số nguyên tố p mà không chia hết cho p2. Dạng 3 : Điều kiện để một số là số chính phương. Cơ sở phương pháp: Chúng ta thường sử dụng các phương pháp sau: + Phương pháp 1: Sử dụng định nghĩa. + Phương pháp 2: Sử dụng tính chẵn, lẻ. + Phương pháp 3: Sử dụng tính chất chia hết và chia có dư. + Phương pháp 4: Sử dụng các tính chất. Dạng 4 : Tìm số chính phương. Cơ sở phương pháp: Dựa vào định nghĩa về số chính phương A = k2 với k là số nguyên và các yêu cầu của bài toán để tìm ra số chính phương thỏa bài toán.
Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán
Bài toán bất đẳng thức, cực trị (tìm giá trị lớn nhất – giá trị nhỏ nhất) luôn là bài toán khó nhất trong đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán nhằm chọn lọc học sinh giỏi – xuất sắc môn Toán vào các lớp chuyên Toán tại các trường THPT chuyên. Nhằm giúp các em học sinh lớp 9 có thể ôn tập bài toán bất đẳng thức và bài toán cực trị, THCS. giới thiệu đến các em tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán, tài liệu được tổng hợp bởi tác giả Trịnh Bình. Trích dẫn nội dung tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán: + Cho các số dương a, b, c dương thỏa mãn abc = a + b + c + 2. Tìm giá trị lớn nhất của biểu thức P = 1/√(a^2 + b^2) + 1/√(b^2 + c^2) + 1/√(c^2 + a^2) (TS10 / chuyên Phan Bội Châu – Nghệ An / 2019 – 2020). + Cho x, y, z là các số thực thuộc đoạn [0;2] thỏa mãn điều kiện: x + y + z = 3. a) Chứng minh rằng: x^2 + y^2 + z^2 < 6. b) Tìm giá trị lớn nhất của biểu thức: P = x^3 + y^3 + z^3 – 3xyz (TS10 / chuyên TP. Hồ Chí Minh / 2019 – 2020). [ads] + Cho x, y, z là các số thực dương thỏa mãn: xy + yz + 4zx = 32. Tìm giá trị nhỏ nhất của biểu thức: P = x^2 + 16y^2 + 16z^2 (TS10 / chuyên Hòa Bình / 2019 – 2020). + Cho các số thực không âm a, b, c sao cho ab + bc + ca = 3 . Chứng minh rằng: 1/(a^2 + 2) + 1/(b^2 + 2) + 1/(c^2 + 2) ≤ 1 (TS10 / chuyên Phú Thọ / 2009 – 2010). + Giả sử x, y, z là những số thực thoả mãn điều kiện 0 ≤ x, y, z ≤ 2 và x + y + z = 3. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức M = x^4 + y^4 + z^4 + 12(1 – x)(1 – y)(1 – z) (TS10 / chuyên KHTN – Hà Nội / 2009 – 2010).