Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ôn luyện lớp 9 môn Toán theo chủ đề (tập 2)

Nội dung Ôn luyện lớp 9 môn Toán theo chủ đề (tập 2) Bản PDF - Nội dung bài viết Ôn luyện lớp 9 môn Toán - Chủ đề tập 2Chủ đề 1: Hệ hai phương trình bậc nhất hai ẩnChủ đề 2: Hàm số y = ax2 (a khác 0). Phương trình bậc hai một ẩnChủ đề 3: Góc với đường trònChủ đề 4: Hình trụ, hình nón, hình cầu Ôn luyện lớp 9 môn Toán - Chủ đề tập 2 Chiếc tập sách Ôn luyện lớp 9 môn Toán tập 2 là một nguồn tài liệu vô cùng hữu ích với tổng cộng 199 trang sách. Bao gồm tóm tắt lý thuyết, bài tập và các dạng toán, đây là một công cụ học tập không thể thiếu để học sinh lớp 9 ôn luyện môn Toán một cách hiệu quả. Mục lục của tài liệu này được chia thành các chủ đề cụ thể, giúp học sinh dễ dàng theo dõi và ôn tập theo từng phần như sau: Chủ đề 1: Hệ hai phương trình bậc nhất hai ẩn - Vấn đề 1: Phương trình bậc nhất hai ẩn - Vấn đề 2: Hệ hai phương trình bậc nhất hai ẩn - Vấn đề 3: Giải hệ phương trình bằng phương pháp thế - Vấn đề 4: Giải hệ phương trình bằng phương pháp cộng đại số - Vấn đề 5: Hệ phương trình bậc nhất hai ẩn chứa tham số - Và các vấn đề khác liên quan đến hệ phương trình bậc nhất hai ẩn. - Ôn tập cuối chủ đề 1 để củng cố kiến thức. Chủ đề 2: Hàm số y = ax2 (a khác 0). Phương trình bậc hai một ẩn - Vấn đề 1: Hàm số y = ax2 và đồ thị - Vấn đề 2: Công thức nghiệm của phương trình bậc hai - Và các vấn đề khác liên quan đến phân tích đồ thị hàm số và phương trình bậc hai. - Ôn tập cuối chủ đề 2 để ôn lại kiến thức đã học. Chủ đề 3: Góc với đường tròn - Vấn đề 1: Góc ở tâm, số đo cung - Vấn đề 2: Liên hệ giữa cung và dây - Và các vấn đề liên quan đến góc tạo bởi các yếu tố đường tròn khác nhau. - Ôn tập cuối chủ đề 3 để củng cố kỹ năng giải các bài tập liên quan đến góc và đường tròn. Chủ đề 4: Hình trụ, hình nón, hình cầu - Vấn đề 1: Diện tích xung quanh và thể tích của hình trụ - Vấn đề 2: Diện tích xung quanh và thể tích của hình nón, hình nón cụt - Và các vấn đề liên quan đến diện tích và thể tích các hình khối. - Ôn tập cuối chủ đề 4 để tự tin giải các bài tập về hình trụ, hình nón và hình cầu. Trong tài liệu cũng có phần Hướng dẫn gợi ý đáp án để học sinh có thể tự kiểm tra và tự ôn tập kiến thức một cách hiệu quả nhất. Với cấu trúc rõ ràng, dễ hiểu và sắp xếp logic theo từng chủ đề, tài liệu Ôn luyện lớp 9 môn Toán tập 2 sẽ là người bạn đồng hành đắc lực giúp học sinh chuẩn bị tốt cho kỳ thi cuối kỳ.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc hai
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm căn bậc hai. 2. Khái niệm về căn bậc hai số học. 3. So sánh các căn bậc hai số học. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Tìm căn bậc hai và căn bậc hai số học của một số. Cách giải: Ta sử dụng các kiến thức sau: – Nếu a > 0 thì các căn bậc hai của a là ±a. – Căn bậc hai số học của a là a. – Nếu a = 0 thì căn bậc hai của a và căn bậc hai số học của a cùng bằng 0. – Nếu a < 0 thì a không có căn bậc hai và do đó không có căn bậc hai số học. Dạng 2 : Tìm số có căn bậc hai số học là một số cho trước. Cách giải: Với số thực a ≥ 0 cho trước, ta có 2 a chính là số có căn bậc hai số học bằng a. Dạng 3 : Tính giá trị của biểu thức chứa căn bậc hai. Cách giải: Ta sử dụng kiến thức: Với số a ≥ 0 ta có 2 2 a aa a. Dạng 4 : So sánh các căn bậc hai số học. Cách giải: Với: a b ab a b. Dạng 5 : Tìm giá trị của x thỏa mãn điều kiện cho trước. Cách giải: Ta sử dụng chú ý sau: 2 2 xa x a 8. Với số a ≥ 0 ta có: 2 xa xa. Dạng 6 : Chứng minh một số là số vô tỷ. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn thức bậc hai và hằng đẳng thức $\sqrt {A^2} = \left| A \right|$ trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Căn thức bậc hai. a. Định nghĩa: Với A là một biểu thức đại số thì A được gọi là căn thức bậc hai của A và A gọi là biểu thức lấy căn hay là biểu thức dưới dấu căn. b. A có nghĩa (hay xác định) khi 1 A 0 A ⇒ có nghĩa khi A > 0. Ví dụ: 3x có nghĩa khi 30 0 x x. 2. Hằng đẳng thức. Ví dụ 1: 2 2 12 12 12. Ví dụ 2: Rút gọn biểu thức sau: 2 (2) x với x ≥ 2. B. Bài tập và các dạng toán. Dạng 1: Tìm điều kiện để biểu thức chứa căn có nghĩa. Dạng 2: Tính giá trị của biểu thức. Dạng 3: Rút gọn các biểu thức chứa biến. Dạng 4: giải phương trình. Dạng 5: Tìm GTLN, GTNN của biểu thức. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép chia và phép khai phương
Tài liệu gồm 14 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép chia và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với A B 0 0 thì A A B B. 2. Quy tắc khai phương một thương: Muốn khai phương A B (với A B 0 0), ta khai phương A khai phương B rồi lấy thương của hai kết quả. Ta có: 0 0 A A A B. 3. Quy tắc chia các căn bậc hai: Muốn chia căn bậc hai của số A ≥ 0 cho căn bậc hai của số B > 0, ta có thể chia A cho B rồi khai phương kết quả đó 0 0 A A A B. B. Bài tập và các dạng toán. Dạng 1 : Thực hiện phép tính. Cách giải: Áp dụng công thức khai phương một thương. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng quy tắc khai phương một thương. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.