Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ phương trình bậc nhất hai ẩn

Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Chuyên đề hệ phương trình bậc nhất hai ẩn Chuyên đề hệ phương trình bậc nhất hai ẩn Tài liệu này bao gồm 77 trang, hướng dẫn cách giải các dạng toán liên quan đến hệ phương trình bậc nhất hai ẩn, giúp học sinh hiểu rõ chương trình Đại số lớp 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. Kiến thức trọng tâm Bộ tài liệu này chủ yếu tập trung vào việc giải các dạng toán đặc biệt về hệ phương trình bậc nhất hai ẩn và cách tiếp cận vấn đề. B. Các dạng toán và phương pháp giải I. Phương pháp thế Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp thế. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp thế và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Xác định điều kiện để hệ phương trình có nghiệm thỏa mãn điều kiện đã cho. II. Phương pháp cộng đại số Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp cộng đại số và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. Sử dụng phương pháp đặt ẩn phụ Chương này tập trung vào việc sử dụng phương pháp đặt ẩn phụ để giải các bài toán liên quan đến hệ phương trình bậc nhất hai ẩn. C. Bài tập trắc nghiệm hệ phương trình bậc nhất hai ẩn Bộ tài liệu này cũng cung cấp các bài tập trắc nghiệm để học sinh ôn tập và kiểm tra kiến thức của mình về chủ đề này. D. Đáp án và hướng dẫn giải Để giúp học sinh tự kiểm tra và tự học thêm, tài liệu kèm theo đáp án và hướng dẫn chi tiết cách giải các bài tập.

Nguồn: sytu.vn

Đọc Sách

Vở bài tập Toán 9 tập 1 phần Hình học
Tài liệu gồm 103 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 1 phần Hình học. CHƯƠNG 1 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG. Bài 1. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. Dạng 1: Tính độ dài đoạn thẳng và các yếu tố khác dựa vào hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Dạng 2: Tính độ dài dựa vào hệ thức liên quan đến đường cao. Dạng 3: Chứng minh các hệ thức hình học. Bài 2. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. Dạng 1: Tính tỉ số lượng giác của góc nhọn trong tam giác vuông khi biết độ dài hai cạnh. Dạng 2: Dựng góc nhọn α khi biết tỉ số lượng giác của góc nhọn đó bằng m/n. Dạng 3: Chứng minh hệ thức lượng giác. Dạng 4: Biết một giá trị lượng giác của góc nhọn, tính các tỉ số lượng giác khác của góc đó. Dạng 5: Tính giá trị lượng giác với các góc đặc biệt (không dùng máy tính hoặc bảng số). Dạng 6: So sánh các tỉ số lượng giác mà không dùng máy tính hoặc bảng số. Dạng 7: Tìm góc nhọn α thỏa đẳng thức cho trước. Bài 4-5. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG ỨNG DỤNG THỰC TẾ CÁC TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. Dạng 1: Giải tam giác vuông. Dạng 2: Giải tam giác nhọn. Dạng 3: Tính diện tích tam giác, tứ giác. Dạng 4: Ứng dụng thực tế của hệ thức lượng trong tam giác vuông. Bài. ÔN TẬP CHƯƠNG I. Dạng 1: So sánh các tỉ số lượng giác. Dạng 2: Rút gọn và tính giá trị của biểu thức lượng giác. Dạng 3: Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4: Chứng minh hệ thức giữa các tỉ số lượng giác. CHƯƠNG 2 . ĐƯỜNG TRÒN. Bài 1. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN. TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN. Dạng 1: Xác định tâm và bán kính của đường tròn đi qua nhiều điểm. Dạng 2: Xác định vị trí của điểm và đường tròn. Dạng 3: Dựng đường tròn thỏa mãn yêu cầu cho trước. Bài 2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN. Dạng 1: So sánh các đoạn thẳng. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau. Bài 3. LIÊN HỆ GIỮA DÂY VÀ KHOẢNG CÁCH TỪ TÂM ĐẾN DÂY. Dạng 1: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau. Dạng 2: So sánh độ dài các đoạn thẳng. Bài 4. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN. Dạng 1: Xác định vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài toán liên quan đến tính độ dài. Bài 5. DẤU HIỆU NHẬN BIẾT TIẾP TUYẾN CỦA ĐƯỜNG TRÒN. Dạng 1: Chứng minh một đường thẳng là tiếp tuyến của đường tròn. Dạng 2: Bài toán liên quan đến tính độ dài. Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU. Dạng 1: Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc. Dạng 2: Tính độ dài đoạn thẳng. Tính số đo góc. Bài 7. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN. Dạng 1: Chứng minh song song, vuông góc. Dạng 2: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau. Bài 8. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN (TT). Dạng 1: Xác định vị trí tương đối của hai đường tròn. Dạng 2: Các bài toán liên quan đến hai đường tròn tiếp xúc nhau. Bài. ÔN TẬP CHƯƠNG II.
Vở bài tập Toán 9 tập 1 phần Đại số
Tài liệu gồm 172 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 1 phần Đại số. CHƯƠNG 1 . CĂN BẬC HAI – CĂN BẬC BA. Bài 1. CĂN BẬC HAI SỐ HỌC. Dạng 1: Tìm căn bậc hai, căn bậc hai số học của một số. Dạng 2: Tính giá trị của biểu thức chứa căn bậc hai. Dạng 3: Tìm giá trị của x thỏa mãn biểu thức cho trước. Dạng 4: So sánh các căn bậc hai số học. Bài 2. CĂN THỨC BẬC HAI. HẰNG ĐẲNG THỨC BẬC HAI. Dạng 1: Tìm giá trị của biểu thức chứa căn bậc hai. Dạng 2: Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Phân tích đa thức thành nhân tử. Dạng 5: Giải phương trình. Bài 3. LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG. Dạng 1: Khai phương một tích. Dạng 2: Nhân các căn bậc hai. Dạng 3: Rút gọn, tính giá trị của biểu thức. Dạng 4: Viết biểu thức dưới dạng tích. Dạng 5: Giải phương trình. Dạng 6: Chứng minh bất đẳng thức. Bài 4. LIÊN HỆ GIỮA PHÉP CHIA VÀ PHÉP KHAI PHƯƠNG. Dạng 1: Khai phương một thương. Dạng 2: Chia các căn bậc hai. Dạng 3: Rút gọn, tính giá trị của biểu thức. Dạng 4: Giải phương trình. Bài 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI. Dạng 1: Đưa thừa số ra ngoài dấu căn. Dạng 2: Đưa thừa số vào trong dấu căn. Dạng 3: So sánh hai số. Dạng 4: Rút gọn biểu thức. Dạng 5: Tìm x. Bài 7. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI (tiếp theo). Dạng 1: Khử mẫu của biểu thức lấy căn. Dạng 2: Trục căn thức ở mẫu. Dạng 3: Rút gọn biểu thức. Dạng 4: Chứng minh đẳng thức. Bài 8. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI. Dạng 1: Rút gọn biểu thức chỉ chứa cộng, trừ căn thức. Dạng 2: Rút gọn biểu thức có chứa các phép toán cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. Dạng 3: Rút gọn rồi tính giá trị của biểu thức hoặc rút gọn rồi tìm giá trị của biến để biểu thức thỏa điều kiện nào đó. Dạng 4: Rút gọn biểu thức rồi chứng minh biểu thức có một tính chất khác hoặc tìm GTLN, GTNN của biểu thức. Dạng 5: Chứng minh đẳng thức. Bài 9. CĂN BẬC BA. Dạng 1: Tìm căn bậc ba của một số. Dạng 2: So sánh. Dạng 3: Thực hiện các phép tính. Bài. ÔN TẬP CHƯƠNG I. Dạng 1: Tìm điều kiện để căn thức xác định (hay có nghĩa). Dạng 2: Rút gọn biểu thức. Tính giá trị của biểu thức. Dạng 3: Chứng minh biểu thức có một tính chất nào đó. Dạng 4: Giải phương trình. CHƯƠNG 2 . HÀM SỐ BẬC NHẤT. Bài 1-2. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM HÀM SỐ HÀM SỐ BẬC NHẤT. Dạng 1: Tìm giá trị của biến số để hàm số được xác định. Dạng 2: Tính giá trị của hàm số khi biết giá trị của biến số và ngược lại. Dạng 3: Biểu diễn điểm trên mặt phẳng tọa độ. Xác định khoảng cách giữa hai điểm trên mặt phẳng tọa độ. Dạng 4: Điểm thuộc hoặc không thuộc đồ thị hàm số. Dạng 5: Xác định hàm số bậc nhất. Dạng 6: Xét tính đồng biến, nghịch biến của hàm số. Bài 3. ĐỒ THỊ HÀM SỐ y = ax + b (a khác 0). Dạng 1: Vẽ đồ thị hàm số y = ax + b (a khác 0). Dạng 2: Tìm tham số m biết hàm số đi qua điểm cho trước. Dạng 3: Xác định giao điểm của hai đường thẳng. Dạng 4: Xét tính đồng quy của ba đường thẳng. Dạng 5: Tính khoảng cách từ góc tọa độ đến một đường thẳng cho trước không đi qua O. Bài 4. ĐƯỜNG THẲNG SONG SONG VÀ ĐƯỜNG THẲNG CẮT NHAU. Dạng 1: Xét vị trí tương đối của hai đường thẳng. Dạng 2: Xác định phương trình đường thẳng thỏa mãn điều kiện. Bài 5. HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG y = ax + b (a khác 0). Dạng 1: Tìm hệ số góc của đường thẳng. Dạng 2: Xác định góc tạo bởi đường thẳng và trục Ox. Dạng 3: Xác định phương trình đường thẳng khi biết hệ số góc. Bài. ÔN TẬP CHƯƠNG II. Dạng 1: Tìm điều kiện của biến x để hàm số được xác định. Dạng 2: Tìm giá trị của tham số để hàm số là hàm số bậc nhất. Dạng 3: Xét sự đồng biến nghịch biến rồi tính giá trị của hàm số. Dạng 4: Xác định giao điểm của hai đường thẳng. Dạng 5: Xác định phương trình đường thẳng y = ax + b thỏa mãn điều kiện cho trước. Dạng 6: Xác định góc tạo bởi đường thẳng và trục Ox. ĐỀ KIỂM TRA CHƯƠNG II – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG II – ĐỀ SỐ 2.
Đề kiểm tra Toán 9 (Tập 2)
Cuốn sách Đề kiểm tra Toán 9 (Tập 2) do các tác giả Trần Xuân Tiếp, Phạm Hoàng, Phan Hoàng Ngân biên soạn tuyển chọn các đề kiểm tra định kỳ môn Toán lớp 9, bao gồm các đề: + Đề kiểm tra 15 phút Đại số 9 + Đề kiểm tra 15 phút Hình học 9 + Đề kiểm 1 tiết Đại số 9 + Đề kiểm tra 1 tiết Hình học 9 + Đề kiểm tra học kỳ Toán 9 [ads] Đề kiểm tra Toán 9 thuộc các chương: + Đề kiểm tra Đại số 9 chương 3 – Hệ phương trình bậc nhất hai ẩn + Đề kiểm tra Đại số 9 chương 4 – Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn + Đề kiểm tra Hình học 9 chương 3 – Góc với đường tròn + Đề kiểm tra Hình học 9 chương 4 – Hình trụ – hình nón – hình cầu Các đề kiểm tra theo hình thức tự luận, sau mỗi đề kiểm tra đều có lời giải chi tiết.