Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Quốc Oai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Quốc Oai – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một cơ sở sản xuất lập kế hoạch làm 180 sản phẩm trong một thời gian nhất định. Do cải tiến kĩ thuật, năng suất mỗi ngày tăng 3 sản phẩm, vì thế không những hoàn thành sớm một ngày, mà còn vượt mức 18 sản phẩm. Hỏi theo kế hoạch mỗi ngày phải làm bao nhiêu sản phẩm? + Người ta làm mô hình một chiếc kem có phần trên dạng một nửa hình cầu, phần dưới dạng hình nón với mặt cắt và các kích thước như hình vẽ. Tính thể tích của mô hình đó (Lấy π ≈ 3,14 và làm tròn đến đơn vị dm3). + Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao BE, CF cắt nhau tại H. Gọi K là giao điểm của EF với BC a/ Chứng minh: tứ giác BFEC nội tiếp. Từ đó chứng minh: KB.KC = KE.KF b/ Gọi M là giao điểm của AK với (O). Chứng minh: tứ giác AMFE nội tiếp. c/ Gọi I là trung điểm của BC. Chứng minh: ba điểm H, I, M thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1) gồm 5 bài toán tự luận, có lời giải chi tiết. Trong đề thi, có những bài toán như sau: 1. Anh Nam đi xe đạp từ điểm A đến điểm C. Trên đoạn đường AB ban đầu (với B nằm giữa A và C), anh Nam đi với vận tốc không đổi a (km/h) và mất 1,5 giờ để đi từ A đến B. Trên đoạn đường BC, anh Nam đi chậm dần đều với vận tốc tại thời điểm t (tính bằng giờ) kể từ B là v = -8t + a (km/h). Tính quãng đường AB biết rằng đến C xe dừng hẳn và quãng đường BC dài 16km. 2. Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm P. Gọi D, E là chân đường vuông góc kẻ từ P xuống AB và AC; M là trung điểm của BC. Phần sau của bài toán yêu cầu chứng minh góc MEP bằng góc MDP, chứng minh đường thẳng DE đi qua một điểm cố định và tính diện tích tam giác ADE khi tam giác ABC đều. Đề thi này mang tính chất thách thức và đòi hỏi sự đắn đo và khéo léo trong việc suy luận và giải quyết vấn đề.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Phú Thọ
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Phú Thọ Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Phú Thọ Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Phú Thọ là một bộ đề gồm 5 bài toán tự luận, được cung cấp lời giải chi tiết cho từng bài toán. Đây là một trong những đề thi quan trọng để học sinh thử sức và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Trong đề thi, có các bài toán đa dạng về nội dung và độ khó, đòi hỏi học sinh phải từng bước suy luận logic để tìm ra câu trả lời chính xác. Ví dụ như bài toán về tứ giác nội tiếp đường tròn có giao điểm I, các bước chứng minh và đồng dạng tam giác, hoặc bài toán về parabol và phương trình đường thẳng đi qua hai điểm trên parabol. Đề thi không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn giúp học sinh phát triển tư duy logic, sự sáng tạo và khả năng làm việc độc lập. Việc luyện giải các đề thi thực tế như vậy giúp học sinh tự tin hơn khi đối diện với kỳ thi chính thức.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Ninh Bình
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT Ninh Bình năm học 2017-2018 môn Toán Đề thi tuyển sinh THPT Ninh Bình năm học 2017-2018 môn Toán Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán của Sở Giáo dục và Đào tạo Ninh Bình bao gồm 5 bài toán tự luận, với lời giải chi tiết. Một trong những bài toán trong đề thi là: + Một ô tô dự định đi từ bến xe A đến bến xe B cách nhau 90 km với vận tốc không đổi. Tuy nhiên, ô tô khởi hành muộn 12 phút so với dự định. Để đến bến xe B đúng giờ, ô tô đã tăng vận tốc lên 5 km/h so với vận tốc dự định. Hãy tìm vận tốc dự định của ô tô. Bên cạnh đó, còn có bài toán khác đề cập đến đường tròn, với các yêu cầu sau: + Chứng minh tứ giác AOBC nội tiếp + Chứng minh CH.CO = CM.CN + Chứng minh 2 góc POE và OFQ bằng nhau + Chứng minh: PE + QF >= PQ Đề thi này đòi hỏi học sinh có kiến thức vững chắc về các khái niệm cơ bản trong toán học để giải quyết các bài toán phức tạp. Hy vọng rằng đề thi sẽ giúp các thí sinh rèn luyện và nâng cao kiến thức, kỹ năng trong môn Toán. Hãy cố gắng học tập và làm bài thi tốt, chúc các em thành công!
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Tiền Giang
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Tiền Giang Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Tiền Giang Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Tiền Giang đang gây chú ý với 5 bài toán tự luận, cung cấp lời giải chi tiết cho học sinh. Trong số đó, có các bài toán như sau: 1. Hai thành phố A và B cách nhau 150km. Một xe máy khởi hành từ A đến B, đồng thời một ôtô khởi hành từ B đến A với vận tốc nhanh hơn xe máy là 10km/h. Sau 30 phút ôtô đến A, thì xe máy cũng đến B. Hãy tính vận tốc của mỗi phương tiện. 2. Cho nửa đường tròn tâm O, đường kính AB = 2R. Điểm M là trung điểm của cung AB, điểm N thuộc cung MB (khác M và B). Tia AM và AN cắt tiếp tuyến tại B của nửa đường tròn tại C và D. Các câu hỏi cụ thể: Tính góc ACB Chứng minh tứ giác MNDC nội tiếp Chứng minh AM.AC = AN.AD = 4R^2 3. Hình nón có đường sinh bằng 26cm và diện tích xung quanh là 260pi cm2. Hãy tính bán kính đáy và thể tích của hình nón. Với những câu hỏi thú vị và đa dạng như vậy, đề thi toán tuyển sinh THPT năm học 2017 – 2018 ở Tiền Giang đang thu hút sự quan tâm của các thí sinh và giáo viên.