Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm định HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa

Nội dung Đề kiểm định HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề kiểm định HSG lớp 8 môn Toán năm 2022-2023 phòng GD&ĐT Triệu Sơn Thanh Hóa Đề kiểm định HSG lớp 8 môn Toán năm 2022-2023 phòng GD&ĐT Triệu Sơn Thanh Hóa Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 17 tháng 03 năm 2023. Dưới đây là một số câu hỏi mẫu từ bài thi: 1. Cho a2(b + c) = b2(c + a) = 2023 với a, b, c đôi một khác nhau và khác không. Tính giá trị của biểu thức P = c2(a + b). 2. Cho p là số nguyên tố thỏa mãn (p + 1)/2 và (p2 + 1)/2 đều là số chính phương. Chứng minh p2 − 1 chia hết cho 48. 3. Hình bình hành ABCD có O là giao điểm của hai đường chéo. Kẻ CP vuông góc với đường thẳng AB tại P, CQ vuông góc với đường thẳng AD tại Q. Ở câu hỏi này còn nhiều phần nhỏ khác nhau, giúp học sinh thể hiện sự logic và khả năng giải quyết vấn đề. Chúc quý thầy cô và các em học sinh có những bài thi thành công và học tập hiệu quả!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 8 năm 2020 - 2021 sở GDĐT Bắc Ninh
Đề thi học sinh giỏi cấp tỉnh Toán 8 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được tổ chức ngày 18 tháng 03 năm 2021.
Đề thi HSG Toán 8 cấp trường năm 2020 - 2021 trường THCS Đông Kinh - Lạng Sơn
Đề thi HSG Toán 8 cấp trường năm 2020 – 2021 trường THCS Đông Kinh – Lạng Sơn gồm có 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày … tháng 11 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 8 cấp trường năm 2020 – 2021 trường THCS Đông Kinh – Lạng Sơn : + Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S. a) Chứng minh tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H; M, N là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh P là trực tâm tam giác SQR. d) Chứng minh MN là đường trung trực của AC. + Tìm giá trị nhỏ nhất của biểu thức: A = 13×2 + y2 + 4xy – 2y – 16x + 2015. + Cho hai số a, b thỏa mãn điều điều kiện a + b = 1. Chứng minh a3 + b3 + ab >= 1/2.
Đề thi chọn HSG cấp huyện Toán 8 năm 2019 - 2020 phòng GDĐT Lục Ngạn - Bắc Giang
Ngày 07 tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2019 – 2020. Đề thi chọn HSG cấp huyện Toán 8 năm 2019 – 2020 phòng GD&ĐT Lục Ngạn – Bắc Giang gồm có 01 trang với 05 bài toán, đề được biên soạn theo hình thức tự luận, học sinh có 120 phút để hoàn thành bài thi.
Đề thi HSG Toán 8 năm 2019 - 2020 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2019 – 2020 phòng GD&ĐT Lập Thạch – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2019 – 2020 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh. + Cho biểu thức A. a) Tìm x để giá trị của A được xác định. Rút gọn biểu thức A. b) Tìm giá trị nguyên của x để A nhận giá trị nguyên. + Phân tích các đa thức sau thành nhân tử.