Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm học 2019 2020 trường THCS Thành Công Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm học 2019 2020 trường THCS Thành Công Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 năm học 2019 - 2020 trường THCS Thành Công Hà Nội Đề khảo sát Toán lớp 9 năm học 2019 - 2020 trường THCS Thành Công Hà Nội Ngày 01 tháng 06 năm 2020, học sinh lớp 9 tại trường THCS Thành Công, Hà Nội, đã tham gia kỳ thi khảo sát chất lượng môn Toán. Đề thi bao gồm 05 bài toán dạng tự luận, thời gian làm bài là 90 phút, với đề thi chỉ có 01 trang. Trong đề khảo sát Toán lớp 9 năm học 2019 - 2020 của trường THCS Thành Công, Hà Nội, một trong những bài toán được đưa ra là: + Giải bài toán bằng cách lập phương trình: Một phân xưởng cần dệt 3000 tấm vải để làm khẩu trang. Họ đã thực hiện đúng kế hoạch trong 8 ngày đầu, và với nhu cầu tăng lên, họ đã dệt vượt mức 10 tấm mỗi ngày, từ đó hoàn thành kế hoạch trước 2 ngày. Hỏi mỗi ngày phân xưởng cần dệt bao nhiêu tấm vải? Một bài toán khác trong đề thi đề cập đến tính thể tích nước chứa trong 45 téc hình trụ mà phía trong có đường kính đáy là 0,6m và chiều cao 1m. Đề còn đưa ra một bài toán khác liên quan đến đường tròn và tiếp tuyến, yêu cầu học sinh chứng minh một số phát biểu liên quan đến tứ giác nội tiếp và các mối quan hệ giữa các đường trong hình. Với các bài toán đa dạng và phong phú như vậy, đề thi khảo sát Toán lớp 9 năm học 2019 - 2020 của trường THCS Thành Công đã thách thức tư duy và khả năng giải quyết vấn đề của học sinh, giúp họ củng cố kiến thức và kỹ năng Toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL lần 3 Toán 9 năm 2022 - 2023 phòng GDĐT Quỳnh Lưu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử và khảo sát chất lượng lần 3 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL lần 3 Toán 9 năm 2022 – 2023 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Trong một buổi lao động trồng cây, một tổ học sinh dự định trồng 56 cây. Đến giờ lao động có 1 bạn trong tổ được phân công làm việc khác nên để trồng hết số cây đã định, mỗi bạn trong tổ đều trồng tăng thêm 1 cây so với dự định ban đầu. Hỏi tổ học sinh có bao nhiêu bạn, biết rằng số cây được phân cho mỗi bạn trồng là như nhau. + Một bồn nước inox hãng Sơn Hà dạng hình trụ có chiều cao 1,75m và đường kính đáy 1,2m. Hỏi bồn nước này đựng được bao nhiêu lít nước, biết 3 1 1000 m lít (bỏ qua bề dày của bồn, lấy π ≈ 3,14 và làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho tam giác nhọn ABC nội tiếp đường tròn (O), các đường cao BD và CE cắt nhau tại H. Gọi M là trung điểm của BC. Vẽ đường tròn tâm O’, đường kính AH cắt AM tại điểm K (K khác A). a) Chứng minh tứ giác BEDC nội tiếp. b) Chứng minh MD là tiếp tuyến của đường tròn (O′) và 2 MC MK MA. c) Gọi N là trung điểm của DE, I là giao điểm thứ hai của AN với đường tròn (O). Chứng minh I đối xứng với K qua BC.
Đề KSCL Toán 9 cuối năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 cuối năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn Đề KSCL Toán 9 cuối năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Trong một cuộc họp, ban đầu người ta bố trí 360 ghế theo các dãy và số ghế trong mỗi dãy bằng nhau. Tuy nhiên sau đó để khu vực sân khấu rộng hơn người ta thêm 4 ghế vào mỗi dãy thì bớt được 3 dãy và số ghế trong phòng không thay đổi. Hỏi theo sự sắp xếp ban đầu thì trong phòng họp bố trí bao nhiêu dãy ghế? + Cho tam giác ABC cân tại A (BC < BA), nội tiếp đường tròn (O). Tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại điểm K. a) Chứng minh tứ giác AKBO nội tiếp. b) Biết OB = 3cm; BOC = 100°. Tính độ dài cung nhỏ BC của đường tròn (O) c) Chứng minh AKB = BAC d) Gọi D là điểm đối xứng với C qua B; tia AD cắt đường tròn (O) tại điểm thứ hai là E khác A. Chứng minh ba điểm K, E, C thẳng hàng. + Cho các số hai số a, b thỏa mãn 1/a + 1/b = 1/2. Chứng minh rằng ít nhất một trong hai phương trình x2 + ax + b = 0 và x2 + bx + a = 0 có nghiệm.
Đề KSCL lần 2 Toán 9 năm 2022 - 2023 phòng GDĐT Quỳnh Lưu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử và khảo sát chất lượng lần 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL lần 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Nhân dịp nghỉ lễ 30/4 và 1/5, một nhóm thanh niên đã tổ chức đi du lịch từ Thành Phố Vinh về bãi biển Quỳnh Nghĩa – Quỳnh Lưu. Nhóm đã phải di chuyển bằng xe khách từ Thành Phố Vinh về Thị Trấn Cầu Giát trên quãng đường dài 60 km, sau đó di chuyển bằng xe taxi từ thị trấn Cầu Giát về bãi biển Quỳnh Nghĩa trên quãng đường dài 15 km. Biết tổng thời gian nhóm đi từ Thành Phố Vinh về đến bãi biển Quỳnh Nghĩa là 2 giờ và vận tốc xe khách hơn vận tốc xe taxi là 10 km/h. Tính vận tốc mỗi xe. + Cho tam giác ABC vuông tại A. Đường tròn tâm O, đường kính AB cắt đoạn BC tại D. Gọi H là hình chiếu của A lên OC, tia AH cắt BC tại M. a) Chứng minh tứ giác AHDC nội tiếp. b) Chứng minh CD OB CO DH. c) Chứng minh DM HB DH MB. + Xác định hệ số a, b của hàm số y ax b biết đồ thị hàm số song song với đường thẳng y x 2 và cắt trục hoành tại điểm có hoành độ bằng −1.
Đề KSCL vòng 5 Toán 9 năm 2021 - 2022 trường THCS Cát Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng vòng 5 môn Toán 9 năm học 2021 – 2022 trường THCS Cát Linh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 05 năm 2022. Trích dẫn đề KSCL vòng 5 Toán 9 năm 2021 – 2022 trường THCS Cát Linh – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = (m + 1)x + 2 với x là biến số và m là tham số. a/ Chứng minh với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b/ Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1 và x2. Tìm m để x12 + x1 + (m + 2)x2 = 14. + Cho đường tròn (O;R) đường kính AB và CD vuông góc với nhau, điểm E di động trên cung nhỏ BC. Đoạn thẳng AE cắt đoạn thẳng CD và CB lần lượt tại M và N. Đoạn thẳng ED cắt AB tại H. 1/ Chứng minh tứ giác EBHN nội tiếp. 2/ Chứng minh BN.BC = BH.BA. 3/ Chứng minh diện tích tứ giác AMHD không đổi, từ đó suy ra vị trí của điểm E để diện tích tam giác EMH lớn nhất. + Cho ba số x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 3. Chứng minh rằng?