Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập hàm số và đồ thị Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 118 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề hàm số và đồ thị trong chương trình môn Toán 8 bộ sách Chân Trời Sáng Tạo, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 5 HÀM SỐ VÀ ĐỒ THỊ 2. Bài 1 KHÁI NIỆM HÀM SỐ 2. A. Trọng tâm kiến thức 2. 1 Khái niệm hàm số 2. 2 Giá trị của hàm số 2. B. Các dạng bài tập 2. + Dạng 1 Hàm số, bảng giá trị của hàm số 2. + Dạng 2 Tính giá trị của hàm số khi biết giá trị của biến số, và ngược lại 4. + Dạng 3 Vận dụng 6. C. Bài tập vận dụng 8. Bài 2 KHÁI NIỆM HÀM SỐ VÀ ĐỒ THỊ CỦA HÀM SỐ 14. A. Trọng tâm kiến thức 14. 1 Tọa độ của một điểm 14. 2 Xác định một điểm trên mặt phẳng tọa độ khi biết tọa độ của nó 14. 3 Đồ thị của hàm số 15. B. Các dạng bài tập 15. + Dạng 1 Đọc, biểu diễn toạ độ điểm trên mặt phẳng toạ độ 15. + Dạng 2 Vẽ đồ thị hàm số cho bởi bảng giá trị 17. + Dạng 3 Xác định khoảng cách giữa hai điểm trên mặt phẳng tọa độ 20. + Dạng 4 Điểm thuộc đồ thị, điểm không thuộc đồ thị của hàm số 22. C. Bài tập vận dụng 23. Bài 3 HÀM SỐ BẬC NHẤT y = ax + b (a khác 0) 37. A. Trọng tâm kiến thức 37. 1 Hàm số bậc nhất, bảng giá trị 37. 2 Đồ thị của hàm số bậc nhất 37. B. Các dạng bài tập 37. + Dạng 1 Hàm số bậc nhất, giá trị của hàm số bậc nhất 37. + Dạng 2 Vẽ đồ thị hàm số bậc nhất 39. + Dạng 3 Điểm thuộc đường thẳng Điểm không thuộc đường thẳng 45. + Dạng 4 Xác định đường thẳng 46. + Dạng 5 Vận dụng 47. C. Bài tập vận dụng 49. Bài 4 HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG 60. A. Trọng tâm kiến thức 60. 1 Hệ số góc của đường thẳng 60. 2 Đường thẳng song song và đường thẳng cắt nhau 60. B. Các dạng bài tập 60. + Dạng 1 Nhận diện hệ số góc Xác định đường thẳng biết hệ số góc 60. + Dạng 2 Nhận dạng cặp đường thẳng song song với nhau, cặp đường thẳng cắt nhau, cặp đường thẳng. vuông góc với nhau 62. + Dạng 3 Bài toán tham số liên quan đến hệ số góc của đường thẳng 64. + Dạng 4 Xác định đường thẳng với quan hệ song song 65. + Dạng 5 Xác định đường thẳng với quan hệ vuông góc 66. C. Bài tập vận dụng 68. LUYỆN TẬP CHUNG 77. A. Hàm số bậc nhất 77. B. Tìm hệ số góc của đường thẳng 82. C. Xác định vị trí tương đối giữa hai đường thẳng 83. D. Tìm m để đồ thị hàm số thoả mãn điều kiện về vị trí tương đối 90. ÔN TẬP CHƯƠNG V 102. A. Bài tập trắc nghiệm 102. B. Bài tập tự luận 108.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích đa giác
Nội dung Chuyên đề diện tích đa giác Bản PDF - Nội dung bài viết Chuyên đề diện tích đa giácTóm tắt lý thuyết:Bài tập và các dạng toán:A. Các dạng bài minh họa:B. Phiếu bài tự luyện: Chuyên đề diện tích đa giác Tài liệu này bao gồm 06 trang, cung cấp lý thuyết cơ bản về cách tính diện tích đa giác, bao gồm trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán phổ biến. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề diện tích đa giác, kèm theo đáp án và lời giải chi tiết. Đây là tài liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết: Để tính diện tích đa giác, chúng ta thường chia đa giác đó thành các tam giác hoặc tứ giác để tính toán. Sau đó, tính tổng các diện tích tam giác hoặc tứ giác đó để có diện tích của đa giác ban đầu. Hoặc có thể tạo ra một đa giác mới chứa đa giác ban đầu và tính hiệu các diện tích để đạt được kết quả cuối cùng. Bài tập và các dạng toán: A. Các dạng bài minh họa: Dạng 1: Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2: Tính diện tích của đa giác bất kỳ. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3: Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. Phiếu bài tự luyện: Bên cạnh đó, tài liệu cũng cung cấp phiếu bài tự luyện cho học sinh, giúp họ ôn tập và rèn luyện kỹ năng tính toán diện tích đa giác một cách hiệu quả.
Chuyên đề diện tích hình thoi
Nội dung Chuyên đề diện tích hình thoi Bản PDF - Nội dung bài viết Một bộ tài liệu chuyên về diện tích hình thoi Một bộ tài liệu chuyên về diện tích hình thoi Tài liệu này bao gồm 14 trang chứa thông tin chi tiết về diện tích hình thoi, được chia thành ba phần chính. Phần I: Kiến thức cơ bản Trong phần này, bạn sẽ được học về cách tính diện tích của tứ giác có hai đường chéo vuông góc và diện tích hình thoi. Đặc biệt, bạn sẽ biết rằng diện tích hình thoi có thể tính bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. Phần II: Một số dạng bài tập Trong phần này, bạn sẽ được hướng dẫn cách giải các dạng bài tập phổ biến như tính diện tích của tứ giác có hai đường chéo vuông góc và tính diện tích hình thoi. Bạn cũng sẽ tìm hiểu cách tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phần III: Phiếu bài tự luyện Phần cuối cùng cung cấp cho bạn một phiếu bài tập tự luyện để thực hành và kiểm tra kiến thức của mình. Đáp án và lời giải chi tiết sẽ giúp bạn hiểu rõ hơn và nâng cao kỹ năng giải bài tập về diện tích hình thoi.
Chuyên đề diện tích hình thang
Nội dung Chuyên đề diện tích hình thang Bản PDF - Nội dung bài viết Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang là tài liệu học tập bao gồm 08 trang, được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tài liệu này tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình thang. Đầu tiên, tài liệu giải thích rằng diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao, cũng như diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. Trong phần bài tập và các dạng toán, tài liệu cung cấp các bài tập từ cơ bản đến nâng cao về diện tích hình thang. Các dạng bài minh họa bao gồm: tính diện tích hình thang, tính diện tích hình bình hành, tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích, tìm diện tích lớn nhất (nhỏ nhất) của một hình. Để giải các dạng toán này, học sinh sẽ được hướng dẫn cách sử dụng công thức tính diện tích, cũng như áp dụng các phương pháp giải quan trọng như sử dụng tính chất đường vuông góc ngắn hcm đường xiên. Ngoài ra, tài liệu còn cung cấp phiếu bài tự luyện để học sinh có thể tự rèn luyện và kiểm tra kiến thức của mình trong chuyên đề diện tích hình thang.
Chuyên đề diện tích tam giác
Nội dung Chuyên đề diện tích tam giác Bản PDF - Nội dung bài viết Chuyên đề diện tích tam giácTóm tắt lý thuyếtBài tập và các dạng toánPhiếu bài tự luyện Chuyên đề diện tích tam giác Tài liệu này bao gồm 11 trang, cung cấp kiến thức về diện tích tam giác cần đạt, phân loại và hướng dẫn giải các dạng bài tập liên quan đến chuyên đề này. Nội dung tài liệu được tóm tắt từ lý thuyết về trọng tâm tam giác, cách tính diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết Diện tích tam giác có thể tính bằng nửa tích của một cạnh nhân với chiều cao tương ứng. Tài liệu cũng chú ý đến tỉ số diện tích của hai tam giác khi có một cạnh hoặc một đường cao bằng nhau. Bài tập và các dạng toán Tài liệu cung cấp các dạng bài tập minh họa như: Tính toán, chứng minh về diện tích tam giác; Sử dụng công thức tính diện tích để tìm độ dài đoạn thẳng; Chứng minh hệ thức về diện tích; Tìm vị trí điểm thỏa mãn đẳng thức về diện tích; Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải các dạng toán được hướng dẫn chi tiết, từ việc sử dụng công thức tính diện tích đến phát hiện mối quan hệ giữa các yếu tố trong tam giác. Điều này giúp học sinh nắm vững kiến thức và áp dụng linh hoạt trong giải các bài tập. Phiếu bài tự luyện Tài liệu cuối cùng cung cấp phiếu bài tập tự luyện để học sinh có thể kiểm tra kiến thức và rèn luyện kỹ năng giải bài tập liên quan đến diện tích tam giác. Đây là cơ hội cho học sinh tự kiểm tra và nâng cao khả năng giải bài toán trong chuyên đề này.