Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT quận Hai Bà Trưng Hà Nội

Nội dung Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT quận Hai Bà Trưng Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2020 – 2021 Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội Xin chào quý thầy cô giáo và các em học sinh! Hôm nay Sytu xin giới thiệu đến các bạn đề KSCL Toán lớp 9 năm 2020 – 2021 của Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội. Đề thi này có đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các em có thể tự kiểm tra và ôn tập kiến thức một cách hiệu quả. Đề thi được tổ chức vào ngày thứ Hai, ngày 24 tháng 5 năm 2021. Dưới đây là một số câu hỏi đáng chú ý trong đề thi: + Cho parabol \(y = x^2\) và đường thẳng \(y = mx + 2d\) (với \(m\) là tham số). Hãy chứng minh rằng đỉnh của parabol và đường thẳng luôn cắt nhau tại hai điểm phân biệt \(A\) và \(B\) nằm ở hai phía khác của trục tung. Tìm giá trị của \(m\) sao cho diện tích tam giác \(OAB\) (với \(O\) là gốc tọa độ) bằng 3. + Cho đường tròn \((O, R)\) đường kính \(AB\). Lấy điểm \(C\) nằm trên đường tròn sao cho \(AC = R\). Điểm \(D\) nằm trên cung nhỏ \(BC\) (khác \(B\) và \(C\)). Kéo dài \(AC\) và \(BD\) cắt nhau tại \(E\); kẻ \(EH\) vuông góc với \(AB\) tại \(H\) (\(H\) nằm trên \(AB\)), \(EH\) cắt \(AD\) tại \(I\). Hãy chứng minh rằng tứ giác \(AHDE\) là tứ giác nội tiếp. Sau đó, chứng minh rằng \(CF\) song song với \(EH\) và tam giác \(BCF\) là tam giác đều. Cuối cùng, tìm vị trí của \(D\) trên cung nhỏ \(BC\) để chu vi tứ giác \(ABDC\) đạt giá trị lớn nhất. + Cho ba số thực dương \(a, b, c\) có tổng thỏa mãn \(abc = 3\). Hãy chứng minh bất đẳng thức: \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{9}{a + b + c}\). Hy vọng rằng các em sẽ thấy đề thi này là một cơ hội tốt để rèn luyện và nắm vững kiến thức Toán lớp 9. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2019 - 2020 trường Phạm Hồng Thái - Hà Nội
Đề khảo sát Toán 9 lần 1 năm học 2019 – 2020 trường THCS Phạm Hồng Thái – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 60 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm giúp giáo viên và nhà trường kiểm tra định kỳ chất lượng học sinh. Trích dẫn đề khảo sát Toán 9 lần 1 năm 2019 – 2020 trường Phạm Hồng Thái – Hà Nội : + Cho ∆ABC vuông ở A, vẽ đường cao AH. Biết BC = 25cm và AB = 15cm. a) Tính BH, AH và góc ABC (số đo góc làm tròn đến độ). b) Trên cạnh AC lấy điểm D bất kì (D khác A và C). Gọi E là hình chiếu của A trên BD. Chứng minh: BH.BC = BE.BD. c) Chứng minh: góc ABD = góc AHE. + Thực hiện phép tính. + Giải các phương trình sau.
Đề khảo sát Toán 9 tháng 9 năm 2019 - 2020 trường Dịch Vọng Hậu - Hà Nội
Ngày …/09/2019, trường THCS Dịch Vọng Hậu, Cầu Giấy, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán 9 tháng 9 năm học 2019 – 2020. Đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội đề số 01 gồm 04 bài toán dạng tự luận, đề thi gồm có 01 trang, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội : + Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD. Chú ý: Số đo góc làm tròn đến độ.
Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 9, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho đường tròn (O), đường kính AB = 2R. Gọi M là trung điểm của OB, đường thẳng d luôn đi qua M cắt (O) tại C và D. Gọi H là trung điểm của CD. a) Chứng minh H thuộc đường tròn đường kính OM. b) Giả sử CD = R√3, tính độ dài OH theo R và số đo góc COD. c) Gọi I là trực tâm của tam giác ACD. Chứng minh H là trung điểm của BI. d) Cho đường thẳng d thay đổi và luôn đi qua M. Chứng minh điểm I luôn nằm trên một đường tròn cố định. + Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức N = √(x + y) + √(y + z) + √(z + x).