Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi học sinh giỏi Toán 9

Tài liệu gồm 182 trang, được biên soạn và sưu tầm bởi ThS Nguyễn Chín Em, tuyển tập 35 đề thi học sinh giỏi Toán 9 có lời giải chi tiết, giúp học sinh lớp 9 rèn luyện để chuẩn bị cho kỳ thi HSG Toán 9 cấp trường, cấp huyện / cấp quận, cấp tỉnh / cấp thành phố. Đề số 1. Đề thi HSG Lớp 9 – Quận Ba Đình – TP Hà Nội năm 2017 (Trang 4). Đề số 2. Đề thi HSG Lớp 9 – Quận Cầu Giấy – TP Hà Nội năm 2017 – 2018 Vòng 1 (Trang 9). Đề số 3. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2010 – 2011 (Trang 14). Đề số 4. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2011 – 2012 (Trang 19). Đề số 5. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2012 – 2013 (Trang 24). Đề số 6. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2013 – 2014 (Trang 30). Đề số 7. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2014 – 2015 (Trang 35). Đề số 8. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2016 – 2017 (Trang 41). Đề số 9. Đề thi HSG Lớp 9 – Quận Hoàn Kiếm – TP Hà Nội năm 2018 (Trang 47). Đề số 10. Đề thi Toán 9 HSG năm học 2011 Tp. Đà Nẵng (Trang 52). Đề số 11. Đề thi chọn học sinh giỏi Toán 9 năm học 2010 – 2011 Lâm Đồng (Trang 57). Đề số 12. Đề thi HSG lớp 9 Nghệ An Bảng A năm 2011 (Trang 62). Đề số 13. Đề thi chọn học sinh giỏi Toán 9 năm học 2010 – 2011 Quảng Bình (Trang 67). Đề số 14. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 An Giang (Trang 71). Đề số 15. HSG Toán 9 huyện Bình Giang tỉnh Hải Dương năm học 2012 – 2013 (Trang 77). Đề số 16. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 Tp. Đà Nẵng (Trang 81). Đề số 17. Đề thi HSG toán 9 tỉnh Hải Dương năm học 2012 – 2013 (Trang 85). Đề số 18. Đề thi chọn HSG Toán 9 năm học 2012 – 2013 Tỉnh Hà T˜ĩnh (Trang 90). Đề số 19. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 Kiên Giang (Trang 95). Đề số 20. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 tỉnh Quảng Ninh (Trang 99). Đề số 21. Đề thi chọn học sinh giỏi Toán 9 năm học 2012 – 2013 Tiền Giang (Trang 104). Đề số 22. Đề thi Toán 9 Học sinh gỏi năm học 2013 – 2014 Tỉnh Bắc Ninh (Trang 110). Đề số 23. Đề thi học sinh giỏi Toán 9 năm học 2013 – 2014 Nghi Xuân Hà Tĩnh (Trang 115). Đề số 24. Đề thi Toán 9 Học sinh gỏi năm học 2013 – 2014 Ninh Thuận (Trang 120). Đề số 25. Đề thi chọn học sinh giỏi Toán 9 năm học 2013 – 2014 V˜ĩnh Phúc (Trang 123). Đề số 26. Đề thi Toán 9 Học sinh gỏi năm học 2017 – 2018 An Giang (Trang 127). Đề số 27. Đề thi Toán 9 Học sinh gỏi năm học 2016 – 2017 Sở GD Bến Tre (Trang 132). Đề số 28. Đề thi Toán 9 Học sinh giỏi năm học 2016 – 2017 Hải Phòng (Trang 137). Đề số 29. Đề thi HSG Toán 9 Phú Lộc Thừa Thiên Huế 2017 (Trang 144). Đề số 30. Đề thi chọn học sinh giỏi Toán 9 năm học 2016 – 2017 Thanh Hóa (Trang 148). Đề số 31. Đề thi Toán 9 Học sinh giỏi năm học 2016 – 2017 Sở GD&ĐT Thừa Thiên Huế (Trang 153). Đề số 32. Đề thi chọn học sinh giỏi Toán 9 năm học 2016 – 2017 Thành phố Hồ Chí Minh (Trang 161). Đề số 33. Đề thi Toán 9 Học sinh giỏi năm học 2017 – 2018 Bình Định (Trang 166). Đề số 34. Đề thi chọn học sinh giỏi Toán 9 năm học 2017 – 2018 Hải Dương (Trang 171). Đề số 35. Đề thi chọn học sinh giỏi Toán 9 năm học 2017 – 2018 Huyện Tiền Hải – Tỉnh Thái Bình (Trang 178).

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.
Đề thi học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương. Trích dẫn Đề thi học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho một mảnh đất hình vuông, chiều dài mỗi cạnh là 1000m. Trên mảnh đất đã trồng 4500 cây ăn trái các loại, cây lớn nhất có đường kính 0,5m. Người ta muốn xây dựng các căn nhà nghỉ dưỡng trên mảnh đất này để làm khu du lịch sinh thái. Hãy chứng minh rằng người ta có thể xây dựng được ít nhất 60 căn nhà nghỉ dưỡng trên mảnh đất (với diện tích mỗi căn nhà là 200m2) mà không phải chặt đi một cây ăn trái nào đã trồng trên mảnh đất. + Cho đường tròn tâm O đường kính AB (A, B cố định). Lấy hai điểm M, N lần lượt thuộc hai nửa đối nhau của đường tròn (O) sao cho góc MAN luôn bằng 60° (M khác B; N khác B). Đường thẳng BN cắt tia AM tại E, đường thẳng BM cắt tia AN tại F. a) Tính tỉ số EF AB. b) Khi tam giác AMN đều, gọi C là điểm di động trên cung nhỏ AN (C khác A; C khác N). Đường thẳng qua M và vuông góc với AC cắt đường thẳng NC tại D. Xác định vị trí của điểm C để diện tích tam giác MCD là lớn nhất. + Cho tấm bìa hình tam giác ABC có trọng tâm G. Gấp tấm bìa theo đường EF sao cho đỉnh C trùng với trọng tâm G (E, F lần lượt nằm trên hai cạnh CA, CB). Khi đó, chứng minh rằng: AC BC EC FC 6.