Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra khảo sát lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội

Nội dung Đề kiểm tra khảo sát lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra khảo sát lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Thanh Trì Hà Nội Đề kiểm tra khảo sát lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Thanh Trì Hà Nội Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2021-2022 do phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội tổ chức. Bài thi bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút. Để giúp các em chuẩn bị tốt cho kỳ thi, đề thi đã được cung cấp đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Kỳ thi sẽ diễn ra vào ngày 26 tháng 05 năm 2022. Chúng ta hãy cùng xem qua một số câu hỏi mẫu trong đề thi: Trong việc đóng gói 600 tập vở tặng các bạn vùng cao, lớp 9A dự định sử dụng một số thùng carton cùng loại. Tuy nhiên, sau khi đóng vở vào các thùng, có 3 thùng bị hỏng nên mỗi thùng còn lại phải đóng thêm 10 tập vở nữa mới hết. Hãy tính số thùng carton ban đầu lớp 9A dự định sử dụng và số tập vở dự định đóng trong mỗi thùng. Một nón Huế có đường kính đáy bằng 40cm và độ dài đường sinh là 30cm. Người ta làm mặt xung quanh hình nón bằng 3 lớp lá khô. Hãy tính diện tích lá cần dùng để tạo nên một chiếc nón Huế như vậy. Cho đường tròn (O; R) và dây cung AB không đi qua tâm O. Từ điểm S thuộc tia đối của tia AB vẽ hai tiếp tuyến SC, SD đến đường tròn (O) với C, D lần lượt là hai tiếp điểm và C thuộc cung nhỏ AB. Hãy chứng minh các quan hệ trong bài toán. Hy vọng rằng đề thi sẽ giúp các em học sinh lớp 9 rèn luyện và nâng cao kiến thức môn Toán một cách hiệu quả. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Nguyễn Du - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Du, quận Hoàn Kiếm, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài: 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 18 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Nguyễn Du – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một cái bể không có nước thì sau 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy một mình trong 3 giờ và vòi thứ 2 chảy một mình trong 4 giờ thì cả hai vòi chảy được 2 3 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể. + Cho hệ phương trình: 2 1 2 3 x y mx y. Tìm m để hệ có nghiệm duy nhất (x;y) sao cho biểu thức P = 3x + y nhận giá trị là số nguyên. + Từ một điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB AC với đường tròn (O)(B C là hai tiếp điểm). Gọi H là giao điểm của hai đường thẳng AO và BC. Qua A kẻ cát tuyến ADE với đường tròn (O) (DE O) sao cho tia AE nằm giữa hai tia AO AC và AD AE. a) Chứng minh đường thẳng AO vuông góc với đường thẳng BC. b) Chứng minh 2 AB AD AE. c) Đường phân giác của DBE cắt đường thẳng DE tại M và cắt đường tròn tại điểm thứ hai N. Chứng minh ON ⊥ DE và AB AM. d) Đường thẳng AE cắt đường thẳng BC và đường thẳng ON lần lượt tại K và I. Chứng minh 2 ID IK IA.
Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Lê Quý Đôn, quận Cầu Giấy, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 25 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Lê Quý Đôn – Hà Nội : + Cho parabol (P): y = ax2 a) Tìm hệ số a biết (P) đi qua điểm (-1;1). b) Với giá trị tìm được của a, tìm tọa độ các giao điểm A, B của (P) và đường thẳng (d): y = −2x + 3 và tính diện tích tam giác OAB. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ công nhân phải làm 320 sản phẩm trong một thời gian quy định. Nhưng khi thực hiện do tổ I đã sản xuất vượt mức kế hoạch 15%, tổ II làm giảm 10% so với kế hoạch nên cả hai tổ làm được 333 sản phẩm. Tính số sản phẩm mỗi tổ phải làm theo kế hoạch. + Cho điểm M nằm bên ngoài đường tròn (O; R). Từ M kẻ hai tiếp tuyến MA, MB với đường tròn đó (A và B là tiếp điểm). Qua A kẻ đường thẳng song song với MB cắt đường tròn (O) tại điểm thứ hai là C; MC cắt đường tròn (O) tại điểm D (D khác C). a) Chứng minh bốn điểm M, A, O, B cùng thuộc một đường tròn. b) Chứng minh 2 MA MD MC. c) Tia AD cắt MB tại E. Chứng minh BE2 = ED.EA và E là trung điểm của MB. d) Qua O kẻ đường thẳng song song với AB cắt tia MA, MB lần lượt tại P và Q. Xác định vị trí của điểm M để diện tích tam giác MPQ nhỏ nhất.
Đề khảo sát lần 2 Toán 9 năm 2022 - 2023 trường THCS Thạch Thán - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng lần 2 môn Toán 9 năm học 2022 – 2023 trường THCS Thạch Thán, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài: 120 phút; đề thi có đáp án, hướng dẫn giải và thang điểm. Trích dẫn Đề khảo sát lần 2 Toán 9 năm 2022 – 2023 trường THCS Thạch Thán – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tính kích thước của một HCN biết rằng nếu tăng chiều dài thêm 3m và giảm chiều rộng đi 2m thì diện tích không đổi; Nếu giảm chiều dài đi 3m và tăng chiều rộng thêm 3m thì diện tích cũng không đổi? + Cho đường tròn(O), đường kính AB. Gọi I là điểm cố định trên đoạn OB. Dựng đường thẳng d qua I, vuông góc với AB. Điểm C di động trên đường thẳng d sao cho C nằm ngoài (O). BC cắt (O) tại điểm thứ hai E. AE cắt d tại F. 1) Chứng minh tứ giác AIEC nội tiếp. 2) Chứng minh IF.IC = IA.IB. 3) Đường tròn ngoại tiếp tam giác CEF cắt AC tại điểm thứ hai là N. Chứng minh: N thuộc đường tròn (O;R) và EA là tia phân giác của góc IEN. 4) Gọi T là tâm đường tròn ngoại tiếp tam giác ACF. Chứng minh: khi C di động trên đường thẳng d như đề bài, điểm T luôn thuộc một đường thẳng cố định. + Cho parabol (P): y = x2 và đường thẳng (d): y = x + 6 a) Vẽ parabol (P): y = x2 b) Xác định tọa độ giao điểm của (d) và (P) bằng phương pháp đại số.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 03 năm 2023. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Một mảnh đất hình chữ nhật có chu vi là 56m. Nếu tăng chiều rộng thêm 2m, giảm chiều dài đi 1m thì diện tích mảnh đất tăng thêm 18m2. Tính chiều dài và chiều rộng của mảnh đất đó. + Khoảng cách từ Trái Đất đến Mặt Trời là khoảng cách lý tưởng giúp Trái Đất nhận được lượng nhiệt và ánh sáng phù hợp, từ đó giúp sự sống trên Trái Đất tồn tại và phát triển. Trong một số trường hợp của thiên văn học, người ta xem Trái Đất, Mặt Trời, Mặt Trăng là ba chất điểm. Khi Trái Đất E, Mặt Trăng M và Mặt Trời S tạo thành một góc vuông EMS thì người ta đo được góc SEM là 89,85°. Biết khoảng cách từ Trái Đất đến Mặt Trăng là 384400 km. Em hãy tính khoảng cách từ Trái Đất đến Mặt Trời. (Làm tròn kết quả đến hàng đơn vị). + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (d): y = 2x − 1 và (d): y = -mx + 5 với m là tham số. a) Tìm tất cả các giá trị của m để hai đường thẳng trên cắt nhau. b) Trong trường hợp hai đường thẳng cắt nhau. Gọi M(x;y) là giao điểm của hai đường thẳng (d) và (d’). Tìm tất cả các giá trị của m để x và y là hai số đối nhau.