Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hàm số bậc nhất

Nội dung Các dạng toán hàm số bậc nhất Bản PDF - Nội dung bài viết Các dạng toán hàm số bậc nhấtVấn đề 1: Nhắc lại và bổ sung các khái niệm về hàm số và đồ thị hàm sốVấn đề 2: Hàm số bậc nhấtVấn đề 3: Đồ thị của hàm số bậc nhấtVấn đề 4: Vị trí tương đối giữa hai đường thẳngVấn đề 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0) Các dạng toán hàm số bậc nhất Trong tài liệu này, bạn sẽ được hướng dẫn chi tiết với 28 trang về cách phân loại và giải các dạng toán hàm số bậc nhất. Đây là một tài liệu hữu ích cho học sinh lớp 9 khi học chương trình Toán lớp 9 phần Đại số chương 2. Vấn đề 1: Nhắc lại và bổ sung các khái niệm về hàm số và đồ thị hàm số Trước hết, tóm tắt lý thuyết để bạn hiểu rõ về khái niệm hàm số và đồ thị hàm số. Sau đó, bài tập và các dạng toán sẽ giúp bạn làm quen với các khái niệm này, bao gồm: Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Bài toán liên quan đến đồ thị hàm số y = ax (a ≠ 0). Sau khi làm xong bài tập, bạn cũng sẽ được giao bài tập về nhà để ôn tập kiến thức. Vấn đề 2: Hàm số bậc nhất Trong phần này, bạn sẽ được học về hàm số bậc nhất thông qua: Dạng 1: Nhận dạng hàm số bậc nhất. Dạng 2: Tìm m để hàm số đồng biến, nghịch biến. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để luyện tập thêm. Vấn đề 3: Đồ thị của hàm số bậc nhất Ở phần này, bạn sẽ tìm hiểu về đồ thị của hàm số y = ax + b (a ≠ 0), bao gồm: Dạng 1: Vẽ đồ thị hàm số y = ax + b và tìm tọa độ giao điểm của hai đường thẳng. Dạng 2: Xét tính đồng quy của ba đường thẳng. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để củng cố kiến thức. Vấn đề 4: Vị trí tương đối giữa hai đường thẳng Trong phần này, bạn sẽ được học về vị trí tương đối của hai đường thẳng, bao gồm: Dạng 1: Chỉ ra các cặp đường thẳng song song và cắt nhau. Dạng 2: Xác định phương trình đường thẳng. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để tự kiểm tra kiến thức đã học. Vấn đề 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0) Trong phần này, bạn sẽ học về hệ số góc của đường thẳng y = ax + b (a ≠ 0), bao gồm: Dạng 1: Xác định hệ số góc của đường thẳng. Dạng 2: Xác định phương trình đường thẳng dựa vào hệ số góc. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để rèn luyện kỹ năng giải bài toán.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề phương trình bậc nhất hai ẩn
Tài liệu gồm 12 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình bậc nhất hai ẩn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm phương trình bậc nhất hai ẩn. – Phương trình bậc nhất hai ẩn x y là phương trình có dạng: ax by c (trong đó abc là các số cho trước a ≠ 0 hoặc b ≠ 0). – Nếu điểm Mx y 0 0 thỏa mãn: 0 0 ax by c thì Mx y 0 0 là 1 nghiệm của phương trình. – Trong mặt phẳng tọa độ Oxy mỗi nghiệm x y 0 0 của phương trình ax by c được biểu diễn bởi 1 điểm có tọa độ (x y 0 0) 0 x: Hoành độ và 0 y: Tung độ. 2. Tập nghiệm của phương trình bậc nhất hai ẩn. – Phương trình: 0 0 ax by c luôn có vô số nghiệm. Tập nghiệm của phương trình được biểu diễn bởi đường thẳng (d ax by c). – Nếu a b 0 0 thì phương trình có nghiệm: c x a y R và đường thẳng song song hoặc trùng với Oy. – Nếu a b 0 0 thì phương trình có nghiệm: x R c y b và đường thẳng song song hoặc trùng với Ox. – Nếu a b 0 0 thì phương trình có nghiệm: x R a c y x b b hoặc y R b c x y a a khi đó đường thẳng d cắt cả hai trục tọa độ. Đường thẳng d là đồ thị hàm số: a c y x b b. B. Bài tập và các dạng toán. Dạng 1 : Xét xem một cặp số có là nghiệm của phương trình bậc nhất hai ẩn hay không? Cách giải: Nếu cặp số thực (x y 0 0) thỏa mãn 0 0 ax by c thì nó được gọi là nghiệm của phương trình ax by c. Dạng 2 : Tìm điều kiện của tham số để đường thẳng ax by c thỏa mãn điều kiện cho trước. Cách giải: – Nếu a b 0 0 thì phương trình có nghiệm: c x a y R và đường thẳng song song hoặc trùng với Oy. – Nếu a b 0 0 thì phương trình có nghiệm: x R c y b và đường thẳng song song hoặc trùng với Ox. Dạng 3 : Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn. Cách giải: Để tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn ax by c ta làm như sau: + Bước 1: Tìm một nghiệm nguyên (x y 0 0) của phương trình. + Bước 2: Đưa phương trình về dạng ax x by y 0 từ đó dễ dàng tìm được các nghiệm nguyên của phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hệ hai phương trình bậc nhất hai ẩn
Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ hai phương trình bậc nhất hai ẩn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hệ phương trình bậc nhất hai ẩn. – Hệ phương trình bậc nhất hai ẩn là hệ phương trình có dạng: ax by c ax by c. Trong đó: aba b là các số thực cho trước và 22 2 2 ab a b 0 0 và x y là ẩn. – Nếu hai phương trình (1) (2) có nghiệm chung (x y 0 0) thì (x y 0 0) gọi là nghiệm của hệ phương trình. – Nếu hai phương trình (1) (2) không có nghiệm chung thì hệ phương trình vô nghiệm. – Giải hệ phương trình là tìm tất cả các nghiệm của nó (tập nghiệm). 2. Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn. Xét hệ phương trình: ax by c d ax by c d. – Tập nghiệm của hệ phương trình bậc nhất hai ẩn được biểu diễn bởi tập hợp các điểm chung của hai đường thẳng (d ax by c) và (d ax by c). +) TH1: Nếu d cắt d’ thì hệ phương trình có một nghiệm duy nhất. +) TH2: d // d’ thì hệ phương trình vô nghiệm. +) TH3: d ≡ d’ thì hệ phương trình có vô số nghiệm. 3. Tổng quát. Xét hệ phương trình: ax by c a b c ax by c a b c. – Hệ phương trình có nghiệm duy nhất a a b b. – Hệ phương trình vô nghiệm a a b c b c. – Hệ phương trình có vô số nghiệm a a b c b c. 4. Hệ phương trình tương đương. Hai hệ phương trình được gọi là tương đương với nhau nếu chúng có cùng tập nghiệm. B. Bài tập và các dạng toán. Dạng 1 : không giải hệ phương trình dự đoán số nghiệm của hệ phương trình bậc nhất hai ẩn. Cách giải: Xét hệ phương trình: ax by c a b c ax by c a b c. – Hệ phương trình có nghiệm duy nhất a b a b. – Hệ phương trình vô nghiệm abc abc. – Hệ phương trình có vô số nghiệm abc abc. Dạng 2 : Kiểm tra một cặp số cho trước có phải là nghiệm của hệ phương trình bậc nhất hai ẩn hay không? Cách giải: Cặp số (x y 0 0) là nghiệm của hệ phương trình: ax by c a b c ax by c a b c khi và chỉ khi nó thỏa mãn cả hai phương trình của hệ. Dạng 3 : Giải hệ phương trình bằng phương pháp đồ thị. Cách giải: + Bước 1: Vẽ hai đường thẳng (d ax by c d a x b y c) trên cùng một hệ trục tọa độ. + Bước 2: Xác định nghiệm của hệ phương trình dựa vào đồ thị đã vẽ ở bước 1. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề giải hệ phương trình bằng phương pháp thế
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề giải hệ phương trình bằng phương pháp thế trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Quy tắc thế. – Từ một phương trình của HPT đã cho (coi như phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn). – Dùng phương trình mới ấy để thay thế cho phương trình thứ hai trong hệ phương trình và giữ nguyên PT thứ nhất, ta được hệ phương trình mới tương đương với hệ phương trình đã cho. 2. Giải và biện luận phương trình: ax + b = 0. – Nếu 0 b a x a. – Nếu a ≠ 0 và b ≠ 0 thì phương trình vô nghiệm. – Nếu a = 0 và b = 0 thì phương trình có vô số nghiệm. B. Bài tập và các dạng toán. Dạng 1 : Giải hệ phương trình bằng phương pháp thế. Cách giải: Căn cứ vào quy tắc thế để giải HPT bậc nhất hai ẩn bằng phương pháp thế ta làm như sau: – Từ một phương trình của hệ phương trình đã cho (coi như PT thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn). – Dùng phương trình mới ấy để thay thế cho phương trình thứ hai trong hệ phương trình và giữ nguyên phương trình thứ nhất, ta được HPT mới tương đương với hệ phương trình đã cho. Dạng 2 : Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Cách giải: – Biến đổi hệ phương trình đã cho về hệ phương trình bậc nhất hai ẩn. – Giải hệ phương trình bậc nhất hai ẩn tìm được. Dạng 3 : Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Cách giải: Ta thực hiện theo các bước sau: + Bước 1: Chọn ẩn phụ cho các biểu thức của hệ phương trình đã cho để được hệ phương trình bậc nhất hai ẩn mới ở dạng cơ bản (tìm điều kiện của ẩn phụ nếu có). + Bước 2: Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế, từ đó tìm nghiệm của hệ phương trình đã cho. Dạng 4 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Ta thường sử dụng các kiến thức sau: – Hệ phương trình bậc nhất hai ẩn có nghiệm 0 0 ax by c x y ax by c. – Đường thẳng d ax by c đi qua điểm M x y ax by c. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề giải hệ phương trình bằng phương pháp cộng đại số
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề giải hệ phương trình bằng phương pháp cộng đại số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải hệ phương trình bằng phương pháp cộng đại số. Cách giải: – Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ vế với vế. – Nếu hệ số của cùng một ẩn đối nhau thì ta cộng vế với vế. – Nếu không có hệ số của ẩn nào bằng nhau hoặc đối nhau thì ta nhân hai vế của phương trình với số thích hợp rồi đưa về trường hợp thứ nhất. Dạng 2 : Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Cách giải: Ta thực hiện theo các bước sau: + Bước 1: Biến đổi hệ phương trình đã cho về hệ phương trình bậc nhất hai ẩn. + Bước 2: Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số. Dạng 3 : Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Cách giải: Ta thực hiện theo hai bước: – Chọn ẩn phụ cho các biểu thức của hệ phương trình đã cho để được hệ phương trình bậc nhất hai ẩn mới ở dạng cơ bản. – Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số, từ đó tìm nghiệm của hệ phương trình đã cho. Dạng 4 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Ta thường sử dụng các kiến thức sau: – Hệ phương trình bậc nhất hai ẩn có nghiệm 0 0 ax by c x y ax by c. – Đường thẳng d ax by c đi qua điểm M x y ax by c. BÀI TẬP VỀ NHÀ.