Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Lương Sơn Hòa Bình

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Lương Sơn Hòa Bình Bản PDF Đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Lương Sơn – Hòa Bình gồm 03 trang với 24 câu trắc nghiệm (06 điểm) và 05 câu tự luận (04 điểm), thời gian làm bài 90 phút, đề thi có ma trận đề, đáp án và lời giải chi tiết. Ma trận đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Lương Sơn – Hòa Bình: I. Phần trắc nghiệm Nội dungNhận biếtThông hiểuVận dụngBất đẳng thức001Bất phương trình và hệ bất phương trình một ẩn110Dấu của nhị thức bậc nhất111Bất phương trình bậc nhất hai ẩn010Dấu của tam thức bậc hai111Cung và góc lượng giác110Giá trị lượng giác của một cung110Công thức lượng giác010Các hệ thức lượng trong tam giác, giải tam giác111Phương trình đường thẳng121Phương trình đường tròn110Tổng8115 [ads] II. Phần tự luận 1. Xét dấu biểu thức nhị thức bậc nhất, tam thức bậc hai: + Xét dấu nhị thức bậc nhất. + Xét dấu tam thức bậc hai. 2. Cho biết một giá trị lượng giác của cung α, tìm các giá trị lượng giác còn lại. 3. Giải các bất phương trình: + Bất phương trình chứa ẩn ở mẫu đưa về xét dấu biểu thức rồi suy ra nghiệm. + Bất phương trình mức vận dụng. 4. Bài toán hệ thức lượng trong tam giác và giải tam giác. 5. Bài toán về phương trình đường thẳng, đường tròn. + Bài toán lập phương trình tổng quát của đường thẳng. + Bài toán liên quan sự tiếp xúc giữa đường tròn và đường thẳng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM Bản PDF Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(−1; 3), B(5; −5) và đường thẳng d : 2x + 3y − 1 = 0. a. Viết phương trình tham số và phương trình tổng quát của đường thẳng AB. b. Viết phương trình đường tròn tâm A và tiếp xúc với đường thẳng d. c. Viết phương trình đường tròn (C) đi qua các điểm A, B và có tâm thuộc đường thẳng d. + Trên đường tròn lượng giác, điểm M thỏa mãn (Ox;OM) = 700◦ thì nằm ở góc phần tư thứ? + Gọi ∆ là đường thẳng đi qua điểm M(−1; 3) và nhận −→u = (3; 1) làm vectơ chỉ phương. Trong các phương trình sau, phương trình tham số của đường thẳng ∆ là?
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Ngô Gia Tự Đắk Lắk
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Ngô Gia Tự Đắk Lắk Bản PDF Ngày … tháng 06 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra khảo sát chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk mã đề 182 gồm có 03 trang với 20 câu trắc nghiệm (chiếm 04 điểm) và 06 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 182, 183, 215, 216. Trích dẫn đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong các phương trình sau, có một phương trình là phương trình chính tắc của một elip. Hãy cho biết đó là phương trình nào? + Trong mặt phẳng toạ độ Oxy, cho hai điểm A(-2;6), B(1;2) và đường tròn (T) có phương trình (x – 3)^2 + (y + 1)^2 = 5. a) Viết phương trình đường tròn (C) có tâm A và đi qua B. b) Gọi d là tiếp tuyến của đường tròn (T) tại điểm M (4;-3) thuộc (T). Viết phương trình tổng quát của d. + Trong mặt phẳng toạ độ Oxy, cho đường tròn (C) có phương trình (x – 1)^2 + y^2 = 2 và đường thẳng ∆: x – y + m = 0. Tìm m để trên ∆ có duy nhất một điểm M mà từ đó có thể kẻ được hai tiếp tuyến MA, MB tới (C) (với A, B là các tiếp điểm) sao cho tam giác MAB đều. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Gia Định TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Gia Định TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường THPT Gia Định, quận Bình Thạnh, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM có dạng tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho đường tròn (C): x^2 + y^2 – 4x + 6y + 3 = 0. a) Tìm tọa độ tâm và tính bán kính của đường tròn (C). b) Viết phương trình tiếp tuyến (d) với đường tròn (C), biết tiếp tuyến (d) song song với đường thẳng delta: 3x – y + 1 = 0. Tìm tọa độ tiếp điểm. [ads] + Trong mặt phẳng với hệ trục toạ độ Oxy, cho (E): 16x^2 + 25y^2 = 400. Tìm tọa độ các tiêu điểm F1 và F2; đỉnh, tính tiêu cự; độ dài các trục của (E). + Cho cosa = 4/5 với 0 độ < a < 90 độ và cosb = -12/13. Tính các giá trị: sina; tana; cot a và tính giá trị biểu thức: A = cos(a + b).cos(a – b).
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra học kì 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM có dạng đề tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(-1;2) và C(5;5). a) Viết phương trình tổng quát của đường thẳng d qua A và vuông góc BC. b) Viết phương trình đường tròn (C) có tâm là trọng tâm của tam giác ABC và (C) qua gốc tọa độ. c) Tìm điểm K trên đường thẳng d1: 2x – y + 1 = 0 cách trục hoành một đoạn bằng 5, biết rằng điểm K có tung độ dương. [ads] + Cho phương trình x^2 + (m + 2)x – m – 3 = 0 (1). Tìm tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt x1 và x2 sao cho x1^2 + x2^2 < 3 – 2x1x2.