Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Đặng Việt Đông

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề nguyên hàm, tích phân và ứng dụng (phiên bản đặc biệt) do thầy Đặng Việt Đông tổng hợp và biên soạn, tài liệu gồm 654 trang trình bày lý thuyết, phân dạng toán và chọn lọc các bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có lời giải chi tiết, hỗ trợ đắc lực cho các em trong quá trình học tập nội dung chương 3 Giải tích 12. Các chủ đề trong tài liệu gồm : 1.1. Nguyên hàm – định nghĩa, tính chất và nguyên hàm cơ bản (phần 1). 1.2. Nguyên hàm – định nghĩa, tính chất và nguyên hàm cơ bản (phần 2). 2. Nguyên hàm đổi biến số. 3. Nguyên hàm từng phần. 4. Tích phân – định nghĩa, tính chất và tích phân cơ bản. 5. Tích phân đổi biến số. 6. Tích phân từng phần. 7. Giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN) – bất đẳng thức tích phân. 8.1. Tích phân hàm ẩn áp dụng tính chất. 8.2. Tích phân hàm ẩn áp dụng đổi biến. 8.3. Tích phân hàm ẩn áp dụng từng phần. 9.1. Ứng dụng tính diện tích giới hạn bởi các đường. 9.2. Ứng dụng tính diện tích có đồ thị đạo hàm và ứng dụng thực tế. 10.1. Ứng dụng tính thể tích giới hạn bởi các đường. 10.2. Ứng dụng thực tế thể tích bởi các đường và ứng dụng thực tế. 11. Ứng dụng thực tế và liên môn [ads] Chuyên đề nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông (phiên bản đặc biệt) có gì mới? + Tất cả các bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng đều có đáp án lời giải chi tiết. + Cập nhật, bổ sung thêm nhiều dạng toán mới về nguyên hàm, tích phân và ứng dụng như: các bài toán thực tế sử dụng kiến thức liên quan, các bài toán min – max – bất đẳng thức tích phân. + Kiến thức và bài tập được sắp xếp theo thứ tự từ cơ bản đến nâng cao tạo sự thuận tiện trong tra cứu và tự học tại nhà theo lộ trình. + Các bài tập được phân loại theo 4 mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng bậc cao, giúp phù hợp với tất cả các đối tượng học sinh. + Đề bài và lời giải chi tiết được tách riêng thuận tiện với giáo viên khi giao bài tập cho học sinh.

Nguồn: toanmath.com

Đọc Sách

1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán
Tài liệu gồm 202 trang tổng hợp 1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán, tài liệu được biên soạn bởi thầy Trần Văn Tài nhằm giúp học sinh có tài liệu tham khảo ôn thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu : + 414 bài tập trắc nghiệm nguyên hàm có đáp án + 451 bài tập trắc nghiệm tích phân có đáp án + 422 bài tập trắc nghiệm ứng dụng của nguyên hàm – tích phân có đáp án [ads] Các bài tập trong tài liệu được tuyển chọn với nhiều dạng bài khác nhau, với đầy đủ các mức độ dễ – khó thích hợp cho nhiều đối tượng học sinh, giúp các em nắm được các dạng toán nguyên hàm, tích phân và ứng dụng có thể xuất hiện trong đề thi.
Tổng hợp 414 bài tập trắc nghiệm nguyên hàm trong đề thi thử có đáp án - Trần Văn Tài
Tài liệu gồm 63 trang tổng hợp 414 bài tập trắc nghiệm chủ đề nguyên hàm trong các đề thi thử THPT Quốc gia 2017 môn Toán, có đáp án (Những phương án được tô màu đỏ) Trích dẫn tài liệu : + Cho hai hàm số f(x), g(x) là hàm số liên tục trên R, có F(x), G(x) lần lượt là một nguyên hàm của f(x), g(x). Xét các mệnh đề sau: (I): F(x) + G(x) là một nguyên hàm của f(x) + g(x) (II): kF(x) là một nguyên hàm của kf(x) với k ∈ R (III): F(x).G(x) là một nguyên hàm của f(x)g(x) Những mệnh đề nào là mệnh đề đúng? A. (I) và (II) B. (I), (II) và (III) [ads] C. (II) D. (I) + Ký hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của R. Cho hàm số f(x) xác định trên K. Ta nói F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu như: A. F(x) = f'(x) + C, C là hằng số tuỳ ý B. F'(x) = f(x) C. F'(x) = f(x) + C, C là hằng số tuỳ ý D. F(x) = f'(x) + Giả sử F(x) là nguyên hàm của hàm số f(x) = 4x – 1. Đồ thị của hàm số F(x) và f(x) cắt nhau tại một điểm trên trục tung. Tất cả các điểm chung của đồ thị hai hàm số trên là: A. (0; 1) B. (5/2; 9) C. (0; 1) và (5/2; 9) D. (5/2; 8)
Một số vấn đề chọn lọc nguyên hàm, tích phân và ứng dụng - Vũ Ngọc Huyền
Tài liệu gồm 24 trang trình bày một số vấn đề chọn lọc về chủ đề nguyên hàm, tích phân và ứng dụng cần nắm vững. Nội dung tài liệu gồm các phần: + Phần 1. Lý thuyết và ví dụ mẫu 1. Nguyên hàm và các tính chất cơ bản 2. Hai phương pháp cơ bản để tìm nguyên hàm 3. Khái niệm và các tính chất cơ bản của tích phân 4. Hai phương pháp cơ bản tính tích phân 5. Ứng dụng hình học của tích phân + Phần 2. Bài tập rèn luyện kỹ năng 1. Nguyên hàm – chọn lọc các bài tập về nguyên hàm trong các đề thi thử 2. Tích phân – chọn lọc các bài tập về tích phân trong các đề thi thử 3. Ứng dụng của tích phân trong hình học. [ads] + Phần 3. Bổ sung một số dạng về nguyên hàm – tích phân 1. Tích phân và nguyên hàm một số hàm lượng giác 2. Đổi biến lượng giác 3. Nguyên hàm và tích phân của hàm phân thức hữu tỉ 4. Bảng một số nguyên hàm thường gặp + Phần 4. Ứng dụng của nguyên hàm, tích phân trong thực tế
Tuyển chọn 280 câu hỏi trắc nghiệm nguyên hàm - tích phân - Phan Trung Hiếu
Tài liệu này được tổng hợp và sàng lọc từ các cuốn sách và từ một số nguồn tham khảo trên internet. Các câu hỏi được chia thành 3 cấp độ: Thân thương, Quen thuộc và Lạ phù hợp với thời gian của hình thức thi trắc nghiệm. Hy vọng tài liệu này sẽ giúp ích được cho giáo viên trong việc ra đề thi và các em học sinh trong việc học tập về chuyên đề nguyên hàm – tích phân. [ads]