Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2021 2022 trường THCS Trần Mai Ninh Thanh Hóa

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2021 2022 trường THCS Trần Mai Ninh Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2021 - 2022 trường THCS Trần Mai Ninh, Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2021 - 2022 trường THCS Trần Mai Ninh, Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 8. Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi môn Toán lớp 8 năm học 2021 - 2022 của trường THCS Trần Mai Ninh, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 24 tháng 02 năm 2022. Đề thi bao gồm các câu hỏi sau: 1. Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF cắt nhau tại H. Gọi M trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh ABC đồng dạng EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. 2. Cho tam giác PQR cân tại P. Trên cạnh PQ vẽ T sao cho QT = 2PT. Vẽ QG vuông góc với RT. Gọi M là trung điểm của PG. Tính góc PMQ. 3. Cho ba số dương a, b, c với abc = 1. Tìm giá trị lớn nhất của biểu thức M = a + b + c. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Nam Trực – Nam Định.
Đề học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Cao Lộc - Lạng Sơn
Đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn : + Cho a và b là hai số tự nhiên. Biết rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Hỏi tích ab chia cho 5 dư bao nhiêu? + Giải phương trình. + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh: BC AH HC.
Đề chọn học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Bắc Ninh
Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh : + Đa thức f(x) chia cho x + 1 thì được dư là 5, nếu chia cho x2 + 1 thì được dư là x + 2. Tìm dư trong phép chia f(x) cho x3 + x2 + x + 1. + Tìm các số nguyên x, y thỏa mãn: 5x + 53 = 2xy + 8y^2. + Cho hình vuông ABCD, gọi E là điểm bất kỳ trên cạnh BC, tia AE cắt DC tại M, tia DE cắt AB tại N, BM cắt CN tại K, NC cắt AD tại I. 1. Chứng minh: BC^2 = BN.CM và BM vuông góc với CN. 2. Gọi Q là hình chiếu của I trên BC. Tính góc AKQ. 3. Xác định vị trí của E trên cạnh BC để chu vi tam giác BKC lớn nhất.
Đề giao lưu HSG Toán 8 năm 2018 - 2019 phòng GDĐT Chí Linh - Hải Dương
Đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh có 150 phút để làm bài thi, kỳ thi nhằm giao lưu đội tuyển học sinh giỏi Toán 8 của các trường THCS trên địa bàn thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương : + Chứng minh rằng không tồn tại số nguyên n thỏa mãn: (2014^2014 + 1) chia hết cho n^3 + 2012n. + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). a) Chứng minh tam giác AMN vuông cân. b) Chứng minh rằng: AN^2 = NC.NP. c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM^2 + 1/AQ^2 không đổi khi điểm M thay đổi trên cạnh BC. + Cho các số x, y không âm thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức:Q = (4x^2 + 3y)(4y^2 + 3x) + 25xy.