Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán tháng 2 năm 2023 trường THCS Tây Mỗ Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán tháng 2 năm 2023 trường THCS Tây Mỗ Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm 2023 trường THCS Tây Mỗ Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm 2023 trường THCS Tây Mỗ Hà Nội Chào mừng các thầy cô giáo và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm học 2022 - 2023 tại trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 18 tháng 02 năm 2023. Đề khảo sát chất lượng Toán lớp 9 tháng 2 năm 2023 trường THCS Tây Mỗ - Hà Nội bao gồm các câu hỏi thú vị và mang tính logic như sau: Giải bài toán bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất phải may được 2200 chiếc áo trong một ngày. Do tổ 1 làm vượt mức kế hoạch 12%, tổ hai làm vượt mức kế hoạch 10% nên cả hai tổ đã may vượt mức được 240 chiếc áo. Hỏi theo kế hoạch, mỗi tổ phải may được bao nhiêu áo trong một ngày. Tính chiều cao của một cột cờ, biết bóng của cột cờ trên mặt đất dài 11,6m và góc tạo bởi tia nắng mặt trời với mặt đất là 36°50' (làm tròn đến số thập phân thứ nhất). Cho đường tròn (O) và điểm C nằm ngoài (O). Từ C kẻ hai tiếp tuyến CA, CB với (O) (A, B là tiếp điểm). Chứng minh bốn điểm O, A, B, C cùng thuộc một đường tròn. Qua C kẻ cắt tuyến CDE đến (O) (D nằm giữa C và E). Chứng minh: AC2 = CD * CE. Gọi K là trung điểm của DE, đường thẳng BK cắt đường tròn (O) tại Q. Chứng minh rằng AQ // DE. Chứng minh khi cắt tuyến CDE thay đổi thì trọng tâm G của tam giác ADE luôn chạy trên một đường tròn cố định. Hy vọng rằng đề khảo sát này sẽ giúp các em học sinh ôn tập và củng cố kiến thức một cách hiệu quả. Chúc quý thầy cô và các em có kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 tháng 9 năm 2021 trường M.V. Lômônôxốp - Hà Nội
Đề khảo sát Toán 9 tháng 9 năm 2021 trường M.V. Lômônôxốp – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2021 trường M.V. Lômônôxốp – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một địa phương lên kế hoạch xét nghiệm cho toàn bộ người dân trong một thời gian quy định. Dự định mỗi ngày xét nghiệm được 500 người. Tuy nhiên, nhờ cải tiến phương pháp nên mỗi ngày xét nghiệm được thêm 300 người. Vì thế, địa phương này hoàn thành xét nghiệm sớm hơn kế hoạch là 3 ngày. Hỏi theo kế hoạch, địa phương này dự định xét nghiệm trong thời gian bao lâu? + Một bể bơi hình chữ nhật có độ dài đường chéo BC là 12m. Góc tạo bởi đường chéo BC và chiều rộng AB của bể là 60. Em hãy tính chiều dài AC của bể bơi. + Cho tam giác ABC vuông tại A AB AC có đường cao AH và đường trung tuyến AM H M BC. 1) Cho AB BC 6 10. Tính BH và sin ACB. 2) Gọi D là điểm đối xứng của A qua M. Chứng minh rằng: 2 CD BH BC. 3) Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của hai đường thẳng CT và BQ. Chứng minh rằng: T là trực tâm của tam giác BCQ và BAP AQB.
Đề khảo sát Toán 9 (lần 1) năm 2021 - 2022 trường THCS Chu Văn An - Hà Nội
Đề khảo sát Toán 9 (lần 1) năm 2021 – 2022 trường THCS Chu Văn An – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 25 tháng 09 năm 2021. Trích dẫn đề khảo sát Toán 9 (lần 1) năm 2021 – 2022 trường THCS Chu Văn An – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một phân xưởng ký hợp đồng dệt một số khăn mặt trong 20 ngày. Do cải tiến kĩ thuật, mỗi ngày phân xưởng đã sản xuất được nhiều hơn 30 chiếc khăn so với hợp đồng, vì thế phân xưởng đã dệt xong số khăn ký hợp đồng trong 18 ngày và còn dệt thêm được 24 chiếc. Tính số khăn mà phân xưởng phải dệt theo hợp đồng? + Từ nhà bạn Ly đến trường cách 500m. Nhưng hôm nay khi đi đến ngã ba thì đường đang sửa chữa nên Ly phải đi sang nhà bạn An rồi từ nhà An (cách trường 400m) mới tới trường. Tính quãng đường đến trường hôm nay của Ly, biết rằng con đường từ nhà Ly đến nhà An và con đường từ nhà An đến trường vuông góc với nhau. + Cho tam giác ABC vuông tại A, AH là đường cao, cho AB = 9cm, BH = 5cm. a. Tính độ dài đoạn thẳng AH, AC, BC (kết quả làm tròn đến chữ số thập phân thứ nhất ). b. Hai điểm E, D lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AE.AB = AD.AC. c. Chứng minh.
Đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng – Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 02 tháng 10 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng – Hà Nội : + Cho hàm số y m xm 1 2 (với tham số m ≠ −1) có đồ thị là đường thẳng (d). 1. Tìm m để đồ thị hàm số đi qua điểm M 2. Khi m = 1 a. Vẽ đường thẳng (d) trên hệ trục tọa độ Oxy b. Tìm tọa độ giao điểm của đường thẳng (d) với đường thẳng (d1): y = 3x + 1. + Để đo khoảng cách giữa hai địa điểm A và B ở hai bờ một con sông, người ta đặt máy đo ở vị trí C sao cho AC AB. Biết AC = 20m và 750. Tính khoảng cách AB (làm tròn đến mét). + Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH H BC. a) Cho biết AB = 3cm; BC = 5cm. Tính độ dài các đoạn AC, HA và số đo góc HAC (góc làm tròn đến độ). b) Qua B kẻ đường thẳng vuông góc với BC, cắt tia CA tại D. Kẻ AE vuông góc với BD tại E. Chứng minh: 2 DE DB DA và 2 DE DB CH CB AD AC CD. c) Lấy I đối xứng với D qua B. Kẻ IK ⊥ CD tại K. Chứng minh.
Đề khảo sát Toán 9 năm 2021 - 2022 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, đề thi có lời giải chi tiết; kỳ thi được diễn ra vào ngày 16 tháng 09 năm 2021. Trích dẫn  đề khảo sát Toán 9 năm 2021 – 2022 trường THCS Lê Ngọc Hân – Hà Nội : + Biểu thức sau đây xác định với giá trị nào của x (học sinh chỉ ghi đáp số). + Cho hai biểu thức P x x và x x 1 1 Q x xx với x > 0. a) Tính giá trị của biểu thức P khi x = 3. b) Chứng minh rằng 1 1 x Q x. c) So sánh Q với 1. d) Biết P S Q. Tìm giá trị nhỏ nhất của biểu thức S. e) Tìm giá trị của x thỏa mãn Sx x x 4 6 3. + Thực hiện phép tính.