Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Bình Giang Hải Dương

Nội dung Đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Bình Giang Hải Dương Bản PDF Đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Bình Giang Hải Dương là bài kiểm tra chọn lọc nhằm tìm ra những học sinh giỏi ở cấp huyện. Đề thi gồm 05 bài toán tự luận, đòi hỏi các em phải có kiến thức sâu rộng và khả năng giải quyết vấn đề tốt. Thời gian làm bài là 120 phút, đủ để các em có thể suy nghĩ và trả lời đúng câu hỏi.

Một trong những bài toán trong đề thi là phân tích đa thức, yêu cầu học sinh tìm a và b sao cho đa thức P(x) chia hết cho đa thức Q(x). Đây là bài toán cần sự chính xác và logic trong suy luận để tìm ra đáp án chính xác.

Bài toán khác liên quan đến biểu thức và tam giác, yêu cầu học sinh chứng minh đa dạng kiến thức và khả năng áp dụng vào thực tế. Các em cần phải hiểu rõ về các định lý và quy tắc liên quan để có thể giải quyết bài toán một cách chính xác.

Đề thi còn có đáp án, lời giải chi tiết và hướng dẫn chấm điểm, giúp các em tự kiểm tra và rút kinh nghiệm sau khi hoàn thành bài thi. Đây là cơ hội để các em thử sức, rèn luyện và phát triển kiến thức môn Toán một cách toàn diện.

Cuối cùng, đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Bình Giang Hải Dương không chỉ là bài kiểm tra trí tuệ mà còn là cơ hội để các em thể hiện khả năng và đam mê với môn học. Chúc các em thành công và đạt kết quả cao trong bài thi này!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 8 năm 2022 - 2023 trường THCS Phú Thái - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Phú Thái, huyện Kim Thành, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2022 – 2023 trường THCS Phú Thái – Hải Dương : + Phân tích thành nhân tử: 3 333 a b c abc. Áp dụng tìm x biết: 3 3 2 6 xx 211. Tìm số dư trong phép chia của đa thức: xx 1 2 3 6 2023 cho đa thức 2 x 5 7 x. + Cho a, b, c là các số tự nhiên. Chứng minh rằng A = 4a(a + b)(a + b + c)(a + c) + b2c2 là một số chính phương. (Số chính phương là bình phương của một số tự nhiên). Tìm các số nguyên x và y thỏa mãn 3xy + 2y – 2x + 1 = 0. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại M và N. Chứng minh rằng: 1) AM = BF; 2) Tứ giác AEMD là hình chữ nhật; 3) 2 22 111 AB AM AN.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Đông Hà - Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp THCS môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Đông Hà, tỉnh Quảng Trị; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Đông Hà – Quảng Trị : + Cho các số thực a, b, c, x, y, z thoả mãn x = by + cz, y = ax + cz, z = ax + by và x + y + z khác 0. Tính giá trị của biểu thức 111 Q 1 a 1 b 1 c. + Trong dãy số 13597 … …, mỗi chữ số đứng sau bắt đầu từ chữ số thứ tư bằng chữ số hàng đơn vị của tổng ba chữ số đứng ngay trước nó. Hỏi trong dãy này có chứa dãy 789 không? Có hay không số tự nhiên n để n2 + 2022 là số chính phương? + Cho hình thoi ABCD có 0 BAD 40, O là giao điểm hai đường chéo. Gọi H là hình chiếu vuông góc của O trên cạnh AB. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia DC lấy điểm N sao cho HM song song với AN. a) Chứng minh MBH và ADN đồng dạng. b) Chứng minh MB . DN = OB2. c) Tính số đo MON.
Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Thành – Nghệ An : + Biết rằng đa thức f(x) khi chia cho x – 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x2 + x – 6. Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (n thuộc N) đều là các số chính phương thì n chia hết cho 40. + Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh rằng: tam giác ABC đồng dạng với tam giác DBF b) Chứng minh rằng: HD HE HF AD BE CF. + Cho tam giác nhọn ABC có đường cao AH. Trên các đoạn AH, AB, AC lần lượt lấy các điểm D, E, F sao cho EDC = FDB = 90 độ (E khác B). Chứng minh: EF // BC.
Đề Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho đa thức P(x) với hệ số nguyên thỏa mãn P(2) = 10 và P(−2) = −6. Tìm đa thức P(x) biết đa thức P(x) chia cho đa thức x2 – 4 được thương là (2x + 6) và còn dư. + Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B, khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ cùng ngày và vận tốc theo thứ tự là 15 km/h, 35 km/h, 55 km/h. Hỏi lúc mấy giờ thì ô tô cách đều xe đạp và xe máy? + Cho hình chữ nhật ABCD, AC cắt BD tại O, trên đoạn OD lấy điểm P bất kỳ. Gọi M là điểm đối xứng với C qua P. a/ Tứ giác AMDB là hình gì? b/ Gọi E, F lần lượt là hình chiếu của M trên AD, AB. Chứng minh: EF // AC và ba điểm E, F, P thẳng hàng. c/ Chứng minh: Tỉ số các cạnh của hình chữ nhật AEMF không phụ thuộc vào vị trí của điểm P trên OD. d/ Giả sử CP vuông góc BD, CP = 2,4 cm và PD/PB = 9/16. Tính các cạnh của hình chữ nhật ABCD.