Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

20 Câu Trả Lời Ngắn Ứng Dụng Hình Học Của Tích Phân Giải Chi Tiết

Nguồn: thuvienhoclieu.com

Xem

Bài tập thể tích khối lăng trụ đều có lời giải chi tiết
Khối lăng trụ đều có đáy là đa giác đều và các cạnh bên vuông góc với đáy, do đó trong khối lăng trụ đều, ta có thể nhanh chóng xác định độ dài đường cao và diện tích mặt đáy. Các bài toán tính thể tích khối lăng trụ đều thường đi kèm với các giả thiết về độ dài đường chéo, góc giữa đường chéo và mặt đáy. Để giúp bạn đọc luyện tập với các bài toán tính thể tích khối lăng trụ đều, giới thiệu đề bài và lời giải chi tiết của 101 bài tập thể tích khối lăng trụ đều thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán. Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối lăng trụ đều có lời giải chi tiết: + Cho hình chóp S.ABCD có đáy ABCD là hình vuông, các tam giác SAB và SAD là những tam giác vuông tại A. Mặt phẳng (P) qua A vuông góc với cạnh bên SC cắt SB, SC, SD lần lượt tại các điểm M, N, P. Biết SC = 8a, góc ASC = 60 độ. Tính thể tích khối cầu ngoại tiếp đa diện ABCDMNP? + Từ một ảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu. [ads] + Cho hình lăng trụ đều ABC.A’B’C’. Biết khoảng cách từ điểm C đến mặt phẳng (ABC′) bằng a, góc giữa hai mặt phẳng (ABC′) và (BCC’B′) bằng α với cosα = 1/2√3 (tham khảo hình vẽ dưới đây). Thể tích khối lăng trụ ABC.A’B’C’ bằng? + Cho lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy bằng a, chiều cao bằng 2a. Mặt phẳng (P) qua B′ và vuông góc với A’C chia lăng trụ thành hai khối. Biết thể tích của hai khối là V1 và V2 với V1 < V2. Tỉ số V1/V2 bằng? + Cho khối tứ giác đều S.ABCD có thể tích là V. Nếu giảm độ dài cạnh đáy xuống hai lần và tăng độ dài đường cao lên ba lần thì ta được khối chóp mới có thể tích là?
Bài tập tỉ số thể tích khối đa diện có lời giải chi tiết
Trong quá trình học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và luyện tập với các đề thi thử THPT Quốc gia môn Toán, chúng ta thường bắt gặp các bài toán vận dụng tính tỉ số thể tích giữa hai khối đa diện. Để giải quyết được dạng toán này, ngoài việc nắm vững công thức tính thể tích các khối đa diện thường gặp, còn phải biết vận dụng các định lí về tỉ số thể tích … trong trường hợp việc tính thể tích khối đa diện là phức tạp hoặc không có đủ giả thiết để tính toán. giới thiệu đến bạn đọc đề bài và lời giải chi tiết 130 bài tập tỉ số thể tích khối đa diện có lời giải chi tiết, với nhiều biến dạng khác nhau, đồ phức tạp khác nhau. Trích dẫn một số bài toán trong tài liệu bài tập tỉ số thể tích khối đa diện có lời giải chi tiết: + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 độ. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tính tỉ số thể tích giữa hai phần đó. + Trong không gian Oxyz, cho các điểm A, B, C lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện: tỉ số giữa diện tích của tam giác ABC và thể tích khối tứ diện OABC bằng 3/2. Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt đáy. Biết góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 45 độ. Gọi V1, V2 lần lượt là thể tích khối chóp S.AHK và S.ACD với H, K lần lượt là trung điểm của SC và SD. Tính độ dài đường cao của khối chóp S.ABCD và tỉ số k = V1/V2. + Cho khối tứ diện OABC với OA, OB, OC vuông góc từng đôi một và OA = a, OB = 2a, OC = 3a. Gọi M, N lần lượt là trung điểm của hai cạnh AC, BC. Thể tích của khối tứ diện OCMN tính theo a bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích 48. Trên các cạnh SA, SB, SC, SD lần lượt lấy các điểm A′, B′, C′ và D′ sao cho SA’/SA = SC’/SC = 1/3 và SB’/SB = SD’/SD = 3/4. Tính thể tích V của khối đa diện lồi S.A’B’C’D’.
Bài tập thể tích khối chóp đều có lời giải chi tiết
Bài toán yêu cầu tính thể tích khối chóp đều với một số giả thiết được cho trước như: độ dài cạnh, góc giữa hai đường thẳng, góc giữa một đường thẳng với một mặt phẳng, góc giữa hai mặt phẳng … là dạng bài toán thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán. Thông qua việc thực hành giải toán liên quan đến khối chóp đều, chúng ta sẽ rút ra được các tính chất và hướng tiếp cận giải quyết dạng toán này. giới thiệu đến bạn đọc đề bài và hướng dẫn giải chi tiết 85 bài tập thể tích khối chóp đều, tài liệu gồm 55 trang. Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối chóp đều có lời giải chi tiết: + Cắt một miếng giấy hình vuông như hình bên và xếp thành hình một hình chóp tứ giác đều. Biết các cạnh hình vuông bằng 20 cm, OM = x cm. Tìm x để hình chóp đều ấy có thể tích lớn nhất. + Cho khối chóp tam giác đều. Nếu tăng cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp đó sẽ: A. Giảm đi hai lần. B. Không thay đổi. C. Tăng lên hai lần. D. Giảm đi ba lần. [ads] + Trong tất cả các khối chóp tứ giác đều ngoại tiếp mặt cầu bán kính bằng a, thể tích V của khối chóp có thể tích nhỏ nhất. + Người ta gọt một khối lập phương gỗ để lấy khối tám mặt đều nội tiếp nó (tức là khối có các đỉnh là các tâm của các mặt khối lập phương). Biết các cạnh của khối lập phương bằng a. Hãy tính thể tích của khối tám mặt đều đó. + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Gọi G là trọng tâm của tam giác SAC và khoảng cách từ G đến mặt bên (SCD) bằng a√3/6. Tính khoảng cách từ tâm O của đáy đến mặt bên (SCD) và thể tích của khối chóp S.ABCD.
Bài tập thể tích khối chóp có một mặt bên vuông góc với đáy
Khối chóp có một mặt bên vuông góc với đáy là dạng giả thiết được sử dụng rất nhiều trong các bài toán liên quan đến thể tích khối chóp, mặc dù ta chưa thấy được ngay đường cao của hình chóp nhưng có thể dễ dàng tìm được. Để giúp bạn đọc luyện tập với các bài toán có dạng hình này, giới thiệu đề bài và lời giải chi tiết của 69 bài tập thể tích khối chóp có một mặt bên vuông góc với đáy, các bài toán với nhiều biến dạng và độ khó khác nhau, thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán. Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối chóp có một mặt bên vuông góc với đáy: + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, biết AB = AD = 2a, CD = a. Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60 độ. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD. + Cho tứ diện ABCD có ABC là tam giác vuông cân tại C và nằm trong mặt phẳng vuông góc với mặt phẳng (ABD), tam giác ABD là tam giác đều và có cạnh bằng 2a. Tính thể tích của khối tứ diện ABCD. [ads] + Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC = a√15. Tam giác SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với đáy hình chóp. Gọi H là trung điểm cạnh AD, khoảng cách từ B tới mặt phẳng (SHC) bằng 2a√6. Tính thể tích V của khối chóp S.ABCD? + Cho hình chóp có tam giác SAB đều cạnh a, tam giác ABC cân tại C. Hình chiếu của S lên (ABC) là trung điểm của cạnh AB, góc hợp bởi cạnh SC và mặt đáy là 30 độ. Thể tích khối chóp S.ABC tính theo a là? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = 2a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết AC vuông góc với SD. Tính thể tích V của khối chóp S.ABC.