Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Ba Đình - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Ba Đình, thành phố Hà Nội; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút; ngày kiểm tra 20/04/2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một công ty vận tải dự định dùng một số xe cùng loại để chở hết 60 tấn cam từ Vĩnh Long ra Hà Nội. Lúc sắp khởi hành, công ty phải điều 4 xe đi làm việc khác. Vì vậy mỗi xe phải chở thêm 0,5 tấn cam nữa mới hết. Hỏi lúc đầu công ty dự định sử dụng bao nhiêu xe để vận chuyển cam từ Vĩnh Long ra Hà Nội, biết khối lượng cam các xe chở là như nhau. + Một hộp sữa dạng hình trụ có bán kính đáy là 6cm và chiều cao là 15cm. Tính thể tích của hộp sữa đó (lấy π ≈ 3,14). + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của (O). Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác ADFC là tứ giác nội tiếp. 2) Chứng minh DF // BK. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi E là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh MDF MFD và M là tâm đường tròn ngoại tiếp của tam giác DEF.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Vũng Tàu - BR VT
Đề thi học kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2020 – 2021 trường THCS Vũng Tàu – BR VT : + Cho hàm số y = -1/4×2 có đồ thị (P) và đường thẳng (d): y = x – m (m là tham số). 1. Vẽ đồ thị (P). 2. Tìm m để (d) cắt (P) tại hai điểm phân biệt. + Một nhóm học sinh dự định đóng góp 300 cuốn vở để làm quà tặng cho các em nhỏ có hoàn cảnh khó khăn ở một mái ấm tình thương. Thực tế ngày đi trao quà có thêm 2 bạn tham gia đi cùng với nhóm và mỗi bạn trong nhóm góp nhiều hơn dự định 1 cuốn vở, nên tổng số vở góp được là 351 cuốn. Hỏi ban đầu nhóm đó có bao nhiêu học sinh và mỗi học sinh dự định góp bao nhiêu cuốn vở? (biết rằng số vở mỗi học sinh đóng góp là như nhau). + Cho nửa đường tròn tâm O có đường kính AB bằng 2R (R > 0). Gọi C là điểm chính giữa của cung AB và M là điểm thuộc cung BC (M khác B và C). Tiếp tuyến tại M của nửa đường tròn tâm O cắt các đường thẳng OC và AB theo thứ tự tại S và K. AM cắt OC tại I. 1. Tính diện tích hình viên phân được giới hạn bởi AC và cung AC (tính theo R). 2. Chứng minh tứ giác OIMB là tứ giác nội tiếp và SI = SM. 3. Chứng minh AC là tiếp tuyến của đường tròn ngoại tiếp tam giác ICM. 4. Gọi H là hình chiếu của M trên AB. Chứng minh BH.AK = BK.AH.
Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT quận 8 - TP HCM
Đề thi HK2 Toán 9 năm học 2020 – 2021 phòng GD&ĐT quận 8, thành phố Hồ Chí Minh gồm 02 trang với 07 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT quận 8 – TP HCM : + Bạn Bình và bạn Nam đi mua tập và viết ở cùng một cửa hàng, hai bạn quên nhìn giá tiền mỗi loại và chọn mua một số tập và một số viết: bạn Bình mua 15 quyển tập và 8 cây viết hết tất cả 114 000 đồng, bạn Nam mua 12 quyển tập và 5 cây viết hết tất cả 87 000 đồng. Hỗi giá tiền của mỗi quyển tập, mỗi cây viết là bao nhiêu? Biết rằng giá tiền của mỗi quyển tập mà hai bạn mua bằng nhau, giá tiền của mỗi cây viết cũng bằng nhau. + Đồ thị trong hình vẽ sau biểu diễn nhiệt độ không khí thay đổi theo độ cao ở một tỉnh A: cứ lên cao 100 mét thì nhiệt độ không khí giảm 0,6 độ C. Sự thay đổi nhiệt độ không khí đó được biểu diễn bởi công thức T = ah + b, trong đó T là nhiệt độ không khí được tính bằng (°C), h (trăm mét) là độ cao tính từ mực nước biển. a) Hãy tìm hệ số a và b. b) Khi ở độ cao ngang với mực nước biển thì nhiệt độ không khí là bao nhiêu? Ở độ cao 1 200 mét thì nhiệt độ không khí là bao nhiêu? + Một hòn đá rơi tự do từ độ cao so với mặt đất là 120 mét. Bỏ qua sức cản không khí, quãng đường chuyển động (mét) của hòn đá rơi sau thời gian t được biểu diễn gần đúng bởi công thức: s = 5t2, trong đó t là thời gian được tính bằng giây. a) Sau 3 giây hòn đá này cách mặt đất bao nhiêu mét? b) Kể từ khi hòn đá bắt đầu rơi đến khi chạm mặt đất mất thời gian bao lâu? (làm tròn kết quả đến chữ số hàng đơn vị).
Đề thi cuối kì 2 Toán 9 năm 2020 - 2021 sở GDĐT tỉnh Lâm Đồng
Đề thi cuối kì 2 Toán 9 năm 2020 – 2021 sở GD&ĐT tỉnh Lâm Đồng được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 13 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi cuối kì 2 Toán 9 năm 2020 – 2021 sở GD&ĐT tỉnh Lâm Đồng : + Qua điểm A nằm ngoài đường tròn tâm O, kẻ các cát tuyến ABC và ADE sao cho BE và CD cắt nhau tại M. Chứng minh A + CME = 2CDE. + Một mảnh đất hình chữ nhật có chiều dài gấp 4 lần chiều rộng. Nếu giảm chiều rộng 2m và tăng chiều dài lên gấp đôi thì diện tích mảnh đất tăng thêm 20m2. Tìm các kích thước của mảnh đất lúc đầu. + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Trên cung nhỏ BC lấy điểm M sao cho AM không là đường kính (M không trùng B, C). Gọi I, H, K lần lượt là hình chiếu của điểm M trên các đường thẳng BC, AB, AC. Chứng minh ba điểm H, I, K thẳng hàng.
Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HK2 Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Huế, tỉnh Thừa Thiên Huế; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK2 Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Huế : + Một bồn chứa nước dạng hình trụ có đường kính đáy bằng 1,4m và chiều cao bằng 1,5m. Tính thể tích của bồn chứa nước đó? + Một thửa ruộng hình tam giác có diện tích 180m2. Tính một cạnh của thửa ruộng đó biết nếu tăng cạnh đó thêm 4m và giảm chiều cao tương ứng đi 1m thì diện tích của nó không đổi. + Cho phương trình x2 – 6x + 7. Không giải phương trình, hãy tính tổng và tích của hai nghiệm của phương trình đó.