Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài toán về diện tích

Nội dung Một số bài toán về diện tích Bản PDF - Nội dung bài viết Một số bài toán về diện tích Một số bài toán về diện tích Trong tài liệu này, chúng ta sẽ tìm hiểu về một số bài toán về diện tích, nhằm giúp học sinh có thêm kiến thức và kỹ năng trong việc giải các bài toán liên quan. Dưới đây là một số kiến thức cơ bản cần nhớ: 1. Các tính chất cơ bản của diện tích đa giác: Mỗi đa giác có diện tích xác định và là một số dương. Diện tích của hai đa giác bằng nhau khi chúng bằng nhau. Diện tích của hình vuông đơn vị là 1. Diện tích của đa giác được chia thành các đa giác con là tổng diện tích của các đa giác con đó. Nếu diện tích của một đa giác suy biến là 0 thì các đỉnh của đa giác đó cùng nằm trên một đường thẳng. 2. Diện tích tam giác: Diện tích tam giác ABC bằng nửa tích số ba cạnh và nửa chu vi: S = √(p(p-a)(p-b)(p-c)). Bán kính đường tròn ngoại tiếp tam giác ABC: R = abc / 4S. 3. Diện tích các tứ giác: Hình chữ nhật: S = a * b. Hình thang: S = 1/2 * (a + b) * h. Hình bình hành: S = a * h. Tứ giác có hai đường chéo vuông góc: S = 1/2 * d1 * d2. 4. Một số tính chất cơ bản về diện tích tam giác: Đường trung tuyến của một tam giác chia tam giác thành hai phần có diện tích bằng nhau. Trong tam giác ABC, ta luôn có AB * AC * sin(∠BAC) / 2 = SABC. Đây là những kiến thức cơ bản nhưng quan trọng về diện tích mà mọi học sinh cần ghi nhớ để giải quyết các bài toán một cách thành công. Hãy thực hành và áp dụng kiến thức này để cải thiện kỹ năng giải bài toán của mình!

Nguồn: sytu.vn

Đọc Sách

Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân HưngCHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAICHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng là tài liệu tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải từ cơ bản đến nâng cao của chủ đề Đại số bậc THCS. Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI I – KIẾN THỨC CẦN NHỚ: Định nghĩa căn bậc hai. Các công thức vận dụng. Định nghĩa căn bậc ba. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT I – KIẾN THỨC CẦN NHỚ: Hàm số bậc nhất. Khái niệm hàm số bậc nhất. Tính chất. ... II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. Đồng hành cùng học sinh trong việc ôn tập và chuẩn bị cho kỳ thi tuyển sinh, tài liệu luyện thi của thầy giáo Vũ Xuân Hưng sẽ giúp họ nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Các bài toán chứng minh cực trị hình học
Nội dung Các bài toán chứng minh cực trị hình học Bản PDF - Nội dung bài viết Cùng khám phá bài toán chứng minh cực trị hình học! Cùng khám phá bài toán chứng minh cực trị hình học! Tài liệu chứa 50 trang với hướng dẫn chi tiết về cách giải các bài toán chứng minh cực trị hình học, loại dạng toán thường gặp trong các bài tập. Đây sẽ là nguồn thông tin hữu ích giúp bạn nắm vững phương pháp giải và áp dụng chúng một cách hiệu quả.
Bài toán chứng minh các đường thẳng đồng quy
Nội dung Bài toán chứng minh các đường thẳng đồng quy Bản PDF - Nội dung bài viết Bài toán chứng minh các đường thẳng đồng quy trong toán học Bài toán chứng minh các đường thẳng đồng quy trong toán học Trong tài liệu này bao gồm 16 trang với hướng dẫn cụ thể về phương pháp giải bài toán chứng minh các đường thẳng đồng quy. Đây là dạng bài toán thường gặp trong các bài toán hình học. Bài toán này thường đưa ra các điều kiện của các đường thẳng và yêu cầu chúng ta chứng minh rằng các đường thẳng đó đồng quy. Qua việc áp dụng các quy tắc và định lý liên quan, chúng ta có thể dễ dàng chứng minh được tính đồng quy của các đường thẳng đó. Với tài liệu này, bạn sẽ học được cách tiếp cận bài toán chứng minh các đường thẳng đồng quy một cách logic và cụ thể, từ đó giúp bạn nắm vững kiến thức và kỹ năng cần thiết trong việc giải các dạng bài toán này.
Các bài toán chứng minh ba điểm thẳng hàng
Nội dung Các bài toán chứng minh ba điểm thẳng hàng Bản PDF - Nội dung bài viết Cách giải bài toán chứng minh ba điểm thẳng hàng Cách giải bài toán chứng minh ba điểm thẳng hàng Tài liệu này bao gồm 21 trang và hướng dẫn cách giải bài toán chứng minh ba điểm thẳng hàng. Đây là một dạng toán mà các bạn thường gặp trong quá trình học tập. Để giải bài toán này, đầu tiên ta cần phải biết rằng ba điểm thẳng hàng chỉ xảy ra khi ba điểm đó cùng nằm trên một đường thẳng. Để chứng minh điều này, chúng ta cần sử dụng các phương pháp và công thức hình học cơ bản như định lý hình chiếu, định lý góc bù, hay định lý hình vuông. Quá trình chứng minh ba điểm thẳng hàng có thể phức tạp đôi khi, nhưng với kiến thức và kỹ năng phù hợp, chắc chắn bạn có thể giải quyết thành công. Hãy làm quen với các phương pháp chứng minh và luyện tập thường xuyên để nâng cao khả năng giải quyết bài toán hình học của bạn.