Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán

Tài liệu gồm 202 trang, tuyển tập 8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh lớp 9 tham khảo để ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 sắp tới. CHỦ ĐỀ 1 – RÚT GỌN BIỂU THỨC. Dạng 1. Rút gọn biểu thức 1. Dạng 2. Cho giá trị của x tính giá trị của biểu thức 3. Dạng 3. Đưa về giải phương trình 4. Dạng 4. Đưa về giải bất phương trình 10. Dạng 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 16. Dạng 7. Tìm x để P nhận giá trị là số nguyên 24. Dạng 8. Tìm tham số để phương trình P = m có nghiệm 28. CHỦ ĐỀ 2 – HỆ PHƯƠNG TRÌNH. I. HỆ KHÔNG CHỨA THAM SỐ 33. Dạng 1. Hệ đa thức bậc nhất đối với x và y 33. Dạng 2. Hệ chứa phân thức 34. Dạng 3. Hệ chứa căn 36. Dạng 4. Hệ thức chứa trị tuyệt đối 38. II. HỆ CHỨA THAM SỐ 40. CHỦ ĐỀ 3 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH. I. GIẢI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH 45. Dạng 1. Toán chuyển động 45. Dạng 2. Toán năng suất 47. Dạng 3. Toán làm chung công việc 48. Dạng 4. Toán về cấu tạo số 51. Dạng 5. Toán phần trăm 52. Dạng 6. Toán có nội dung hình học 53. II. GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BẬC HAI 55. Dạng 1. Toán chuyển động 55. Dạng 2. Toán năng suất 59. Dạng 3. Toán làm chung công việc 62. Dạng 4. Toán có nội dung hình học 63. CHỦ ĐỀ 4 – PHƯƠNG TRÌNH BẬC HAI VÀ ĐỊNH LÝ VI-ÉT. I. ĐỊNH LÍ VI-ÉT 68. Dạng 1 các nghiệm thỏa mãn một biểu thức đối xứng 68. Dạng 2. Kết hợp định lý Vi-ét để giải các nghiệm 70. Dạng 3. Giải các nghiệm dựa vào ∆ là bình phương 72. Dạng 4. Tính x1^2 theo x1 và x2^2 theo x2 dựa vào phương trình ax2 + bx + c = 0. II. HỆ QUẢ CỦA ĐỊNH LÝ VI-ÉT 77. Dạng 1. Dạng toán có thêm điều kiện phụ 77. Dạng 2. So sánh nghiệm với số 0 và số a 80. Dạng 3. Đặt ẩn phụ 81. III. SỰ TƯƠNG GIAO CỦA ĐƯỜNG THẲNG VÀ PARABOL 83. Dạng 1. Tìm tham số để đường thẳng tiếp xúc parabol, tìm tọa độ tiếp điểm 83. Dạng 2. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức đối xứng đối với xA và xB 84. Dạng 3. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức không đối xứng đối với xA và xB 87. Dạng 4. Tìm tham số để đường thẳng cắt parapol tại hai điểm phân biệt A, B liên quan đến tung độ A, B 92. Dạng 5. Bài toán liên quan đến độ dài, diện tích 94. CHỦ ĐỀ 5 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. I. PHƯƠNG TRÌNH KHÔNG CHỨA THAM SỐ 102. Dạng 1. Phương trình bậc ba nhẩm được một nghiệm 102. Dạng 2. Phương trình trùng phương 102. Dạng 3. Phương trình dạng 103. Dạng 4. Phương trình dạng 432 ax bx cx bx a 0 103. Dạng 5. Phương trình giải bằng phương pháp đặt ẩn phụ 104. Dạng 6. Phương trình chứa ẩn ở mẫu 104. II. PHƯƠNG TRÌNH CHỨA THAM SỐ 105. Dạng 1. Phương trình bậc ba đua được về dạng tích (x – α)(ax2 + bx + c) = 0 105. Dạng 2. Phương trình trùng phương 106. CHỦ ĐỀ 6 – ĐƯỜNG TRÒN. Dạng 1. Kết nối các góc bằng nhau thông qua tứ giác nội tiếp 110. Dạng 2. Chứng minh ba điểm thẳng hàng 119. Dạng 3. Tiếp tuyến 121. Dạng 4. Chứng minh điểm thuộc đường tròn, chứng minh đường kính 124. Dạng 5. Sử dụng định lý Ta-lét và định lý Ta-lét đảo 128. Dạng 6. Sử dụng tính chất phân giác 135. CHỦ ĐỀ 7 – BẤT ĐẲNG THỨC. I. BẤT ĐẲNG THỨC CÔSI 149. Dạng 1. Dạng tổng sang tích 149. Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp 150. Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Cô-si 151. Dạng 4. Ghép cặp đôi 154. Dạng 5. Dự đoán kết quả rồi tách thích hợp 154. Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kêt quả 156. Dạng 7. Tìm lại điều kiện của ẩn 160. II. BẤT ĐẲNG THỨC BUNHIA 162. III. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 166. Dạng 1. Đưa về bình phương 166. Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một 167. Dạng 3. Tạo ra ab + bc + ca 169. Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tòn tại hai số có tích không âm 170. Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1 172. Dạng 6. Dự đoán kết quả rồi xét hiệu 174. CHỦ ĐỀ 8 – PHƯƠNG TRÌNH VÔ TỶ. I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 181. Dạng 1. Ghép thích hợp đưa về tích 181. Dạng 2. Nhân liên hợp đưa về tích 182. Dạng 3. Dự đoán nghiệm để từ đó tách thích hợp đưa về tích 185. II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ 191. Dạng 1. Biến đổi về một biểu thức và đặt một ẩn phụ 191. Dạng 2. Biến đổi về hai biểu thức và đặt hai ẩn phụ rồi đưa về tích 193. Dạng 3. Đặt ẩn phụ kết hợp với ẩn ban đầu đưa về tích 195. Dạng 2. Đánh giá vế này ≥ một số, vế kia ≤ số đó bằng BĐT Cô-si, Bunhia 197. III. PHƯƠNG PHÁP ĐÁNH GIÁ 202.

Nguồn: toanmath.com

Đọc Sách

Các chuyên đề Toán 9 ôn thi vào lớp 10
Tài liệu gồm 190 trang tuyển chọn các chuyên đề Toán 9 ôn thi vào lớp 10, trong mỗi chuyên đề, các bài toán được phân dạng, hướng dẫn cách giải cùng các ví dụ minh họa và bài tập để học sinh rèn luyện. A. CÁC BÀI TOÁN RÚT GỌN CĂN THỨC + Dạng 1: Biểu thức dưới dấu căn là một số thực dương. + Dạng 2: Áp dụng hằng đẳng thức √A^2 = |A|. + Dạng 3: Biểu thức dưới dấu căn đưa được về hằng đẳng thức √A^2 = |A|. + Dạng 4: Rút gọn tổng hợp (sử dụng trục căn thức, hằng đẳng thức, phân tích thành nhân tử). + Dạng 5. Bài toán chứa ẩn (ẩn x) dưới dấu căn và những ý toán phụ. B. CÁC BÀI TOÁN GIẢI HỆ PHƯƠNG TRÌNH + Giải hệ phương trình và một số ý phụ. + Giải hệ phương trình bậc cao. C. GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH + Dạng 1. Toán về quan hệ số. + Dạng 2: Toán chuyển động. + Dạng 3: Toán về năng suất – Khối lượng công việc – %. + Dạng 4: Toán có nội dung hình học. + Dạng 5. Các dạng toán khác. D. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BẬC HAI + Dạng 1. Toán về quan hệ số. + Dạng 2: Toán chuyển động. + Dạng 3: Toán về năng suất – Khối lượng công việc – %. + Dạng 4: Toán có nội dung hình học. + Dạng 5. Các dạng toán khác. E. HÀM SỐ BẬC NHẤT F. HÀM SỐ BẬC HAI + Sự tương giao giữa đường thẳng và đồ thị hàm số bậc hai. [ads] G. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. HỆ THỨC VI-ET VÀ ỨNG DỤNG + Dạng 1: Giải phương trình và phương trình quy về phương trình bậc hai. 1.1 Giải phương trình bậc hai cơ bản. 1.2. Giải phương trình quy về phương trình bậc hai. 1.2.1. Phương trình trùng phương. 1.2.3. Giải phương trình đưa về phương trình tích. 1.2.4. Giải phương trình chứa căn bậc hai. a) Phương trình chứa căn bậc hai đơn giản (quy được về phương trình bậc hai). b) Phương trình vô tỉ. 1.2.5. Giải phương trình chứa dấu GTTĐ. + Dạng 2: Hệ thức Vi-et và ứng dụng. + Dạng 3: Phương trình chứa tham số. H. BẤT ĐẲNG THỨC + Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên. + Kỹ thuật chọn điểm rơi trong bài toán cực trị đạt được tại tâm.
Tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 - 2019
Tài liệu gồm 119 trang được biên soạn bởi các tác giả Tạ Công Hoàng và Nguyễn Đăng Khoa, tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 – 2019, đây là dạng toán không thể thiếu trong các đề thi vào lớp 10 môn Toán và chiếm một tỉ lệ điểm số khá đáng kể và thường được sử dụng để phân loại các em học sinh trung bình với khá – giỏi. Các bài toán được vẽ hình, phân tích và giải chi tiết nhằm giúp học sinh hiểu sâu và nắm được các kỹ thuật giải đối với bài toán này. Trích dẫn tài liệu tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 – 2019 : + (Đề thi Phổ thông Năng khiếu 2000) Cho góc xAy = 90◦ và đường tròn (O) tiếp xúc với Ax và Ay lần lượt tại P, Q. Đường thẳng (d) là một tiếp tuyến thay đổi của (O). Gọi a, p, q là khoảng cách từ A, P, Q xuống đường thẳng (d). Chứng minh: a^2/pq không đổi khi (d) dịch chuyển. Khẳng định trên còn đúng không khi xAy d không phải góc vuông. [ads] + (Đề xuất bởi BunhiChySchwarz) Cho đường tròn (O), từ một điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB, AC. Kẻ đường kính BD, lấy F là trung điểm OB. Qua A kẻ đường thẳng vuông góc với AB cắt OC tại E. Chứng minh: AD ⊥ EF. + (Đề thi Bà Rịa – Vũng Tàu 2017 – 2018) Cho tam giác ABC nội tiếp (O), (I) là đường tròn nội tiếp của tam giác ABC. AI cắt (O) tại A và J. E là trung điểm của BC. Tiếp tuyến tại B và C cắt nhau tại S. AS cắt (O) tại A và D. DI cắt (O) tại D và M. Chứng minh MJ chia đôi IE.
Tổng ôn tập Toán THCS thi vào lớp 10
Cuốn sách Tổng ôn tập Toán THCS thi vào lớp 10 gồm 193 trang hệ thống các chủ đề Toán học chính từ lớp 6 đến lớp 9 nhằm giúp học sinh ôn tập chuẩn bị cho kỳ thi vào lớp 10 môn Toán, đồng thời giúp các em có nền tảng kiến thức vững vàng để tiếp tục học tốt môn Toán THPT, sách được biên soạn bởi các tác giả: Mai Công Mãn (chủ biên), Nguyễn Trọng Dương, Nguyễn Thế Vận, Nguyễn Thị Hiền, Thiều Thị Huyền. Nội dung sách Tổng ôn tập Toán THCS thi vào lớp 10 gồm các chủ đề : Phần 1 . Đại số 1. Biến đổi đồng nhất 2. Biến đổi căn thức 3. Hàm số và đồ thị 4. Phương trình 5. Hệ phương trình 6. Giải bài toán bằng cách lập phương trình và hệ phương trình 7. Bất đẳng thức – Bất phương trình – Cực trị đại số [ads] Phần 2 . Hình học 1. Định lý Talet – Tam giác đồng dạng 2. Đường tròn 3. Hình học không gian
16 chuyên đề ôn thi vào lớp 10 môn Toán
THCS. giới thiệu đến thầy, cô và các em học sinh cuốn sách 16 chuyên đề ôn thi vào lớp 10 môn Toán, sách gồm 192 trang tuyển tập 9 chuyên đề Đại số và 7 chuyên đề Hình học môn Toán khối THCS nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán. Sách được biên soạn bởi các tác giả: Bùi Văn Tuyên (chủ biên) và Nguyễn Đức Trường. Phần 1. Các chuyên đề Đại số + Chuyên đề 1. Rút gọn và tính giá trị của biểu thức + Chuyên đề 2. Giải phương trình và hệ phương trình bậc nhất hai ẩn + Chuyên đề 3. Phương trình bậc hai một ẩn + Chuyên đề 4. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình + Chuyên đề 5. Hàm số và đồ thị + Chuyên đề 6. Chứng minh bất đẳng thức + Chuyên đề 7. Giải bất phương trình + Chuyên đề 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức + Chuyên đề 9. Giải toán có nội dung số học [ads] Phần 2. Các chuyên đề Hình học + Chuyên đề 10. Chứng minh các hệ thức hình học + Chuyên đề 11. Chứng minh tứ giác nội tiếp và nhiều điểm cùng nằm trên đường tròn + Chuyên đề 12. Chứng minh quan hệ tiếp xúc giữa đường thẳng và đường tròn hoặc hai đường tròn + Chuyên đề 13. Chứng minh điểm cố định + Chuyên đề 14. Các bài tập có nội dung tính toán + Chuyên đề 15. Quỹ tích và dựng hình Phần 3. Một số đề thi vào lớp 10 môn Toán tham khảo Phần 4. Đáp số và hướng dẫn giải