Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 9 năm 2018 - 2019 trường THCS Nguyễn Du - Hà Nội

Ngày 22 tháng 05 năm 2019, trường THCS Nguyễn Du – Hoàn Kiếm – Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán năm học 2018 – 2019 đối với học sinh lớp 9, nhằm tổng ôn kiến thức Toán trước khi các em bước vào kỳ thi Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề KSCL Toán 9 năm 2018 – 2019 trường THCS Nguyễn Du – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 5 bài toán, thời gian làm bài 120 phút. Trích dẫn đề KSCL Toán 9 năm 2018 – 2019 trường THCS Nguyễn Du – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai ôtô khởi hành cùng một lúc để đi từ A đến B, trên quãng đường AB dài 120 km. Biết rằng vận tốc trung bình của ô tô thứ nhất lớn hơn vận tốc trung bình của ôtô thứ hai là 12 km/h. Vì vậy, ô tô thứ nhất đã đến B trước ôtô thứ hai là 30 phút. Tính vận tốc trung bình của mỗi ô tô. [ads] + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = -2mx + m^2 + 2 (m khác 0). a) Chứng minh với mọi giá trị m khác 0, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 nằm về hai phía của trục Oy. b) Tìm tất cả giá trị m khác 0 để √(m – x1).√(m – x2) = 0. + Cho nửa đường tròn (O), đường kính AB và điểm M bất kì thuộc nửa đường tròn (M khác A và M khác B). Gọi C là trung điểm của đoạn thẳng AO. Gọi (d) là đường thẳng đi qua C, vuông góc với AB, (d) cắt nửa đường tròn (O) và đường thẳng BM lần lượt tại D và H. 1) Chứng minh: bốn điểm A, C, M, H cùng thuộc một đường tròn. 2) Gọi K là giao điểm của AM và CD. Chứng minh: CA.CB = CK.CH. 3) Gọi N là giao điểm thứ hai của đường thẳng BK và đường tròn ngoại tiếp tam giác MHK. Chứng minh: N nằm trên nửa đường tròn (O) và ON là tiếp tuyến của đường tròn ngoại tiếp tam giác MHK. 4) Chứng minh: khi điểm M thay đổi trên nửa đường tròn (O) thì đường thẳng MN luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 25 tháng 04 năm 2024. Trích dẫn Đề khảo sát Toán 9 lần 2 năm 2023 – 2024 phòng GD&ĐT thành phố Hải Dương : + Công ty HD xây dựng kế hoạch cho 2 phân xưởng sản xuất với tổng sản phẩm làm được là 520 sản phẩm. Tuy nhiên, các phân xưởng đều rất trách nhiệm và áp dụng tốt kĩ thuật nên đã nâng cao hiệu quả công việc. Vì thế, phân xưởng thứ nhất vượt mức so với kế hoạch là 10%, phân xưởng thứ hai vượt mức so với kế hoạch là 20% và tổng số sản phẩm sản xuất được của 2 phân xưởng là 596 sản phẩm. Hỏi theo kế hoạch ban đầu, mỗi phân xưởng làm bao nhiêu sản phẩm? + Một người đứng ở vị trí A trên nóc một ngôi nhà cao 4 m đang quan sát một cây cao, cách ngôi nhà 20 m và đo được 0 BAC 45 (tham khảo hình vẽ). Tính chiều cao của cây đó (theo đơn vị mét, làm tròn kết quả đến hàng phần mười), biết rằng nếu góc nhọn và thoả mãn 1 tan 5 thì ta chọn 0 11. + Cho tam giác nhọn ABC có AB AC các đường cao BD và CE cắt nhau tại H. a) Chứng minh rằng tứ giác ADHE nội tiếp đường tròn. b) Gọi M là trung điểm của BC, đường thẳng DE cắt BC tại N, AH cắt BC tại K. Chứng minh rằng DEK DMC và NH AM.
Đề khảo sát lần 4 Toán 9 năm 2023 - 2024 phòng GDĐT Thanh Hà - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng lần 4 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thanh Hà, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát lần 4 Toán 9 năm 2023 – 2024 phòng GD&ĐT Thanh Hà – Hải Dương : + Một xe lửa cần vận chuyển một lượng hàng. Người lái xe tính rằng nếu xếp mỗi toa 15 tấn hàng thì còn thừa lại 5 tấn, còn nếu xếp mỗi toa 16 tấn thì có thể chở thêm 3 tấn nữa. Hỏi xe lửa có mấy toa và phải chở bao nhiêu tấn hàng. + Trên nóc của một tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng – ten dưới góc 0 50 và 0 40 so với phương nằm ngang. Tính chiều cao của tòa nhà. + Cho tam giác ABC vuông tại A, M là một điểm thuộc cạnh AC (M khác A và C). Đường tròn đường kính MC cắt BC tại N và cắt tia BM tại I. Chứng minh rằng: a) ABNM và ABCI là các tứ giác nội tiếp đường tròn. b) NM là tia phân giác của góc ANI và BM.BI + CM.CA = AB2 + AC2.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Nam Sách - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Nam Sách, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Nam Sách – Hải Dương : + Bác An gửi tiết kiệm 100 triệu đồng vào ngân hàng với hạn một năm. Sau năm thứ nhất do chưa có nhu cầu sử dụng nên bác An không rút ra mà tiếp tục gửi một năm nữa. Ngân hàng đã gộp tiền gốc, tiền lãi của năm thứ nhất thành tiền gốc của năm thứ hai. Lãi suất năm thứ hai bằng lãi suất năm thứ nhất. Sau hai năm bác An rút tiền ra thì nhận được 108,16 triệu đồng cả gốc lẫn lãi. Hỏi lãi suất gửi tiết kiệm của ngân hàng là bao nhiêu % một năm? + Tàu ngầm đang ở trên mặt biển, lặn xuống theo phương tạo với mặt nước biển một góc 290. Nếu tàu chuyển động theo phương lặn xuống được 300m thì nó ở độ sâu bao nhiêu? Nếu đạt đến độ sâu 250m thì tàu phải chạy bao nhiêu mét? (Các độ dài làm tròn đến mét). + Cho tam giác MNP có ba góc nhọn (MN < MP) nội tiếp đường tròn (O). Hai đường cao NE và PF cắt nhau tại điểm H. a) Chứng minh tứ giác NFEP nội tiếp. b) Kẻ đường kính MQ của đường tròn. Đường thẳng MQ cắt NP tại điểm I, đường thẳng EF cắt đường thẳng MH tại điểm K. Chứng minh: NMH QMP và KI // HQ.
Đề khảo sát Toán 9 tháng 04 năm 2024 phòng GDĐT Cẩm Giàng - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 04 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Cẩm Giàng, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 tháng 04 năm 2024 phòng GD&ĐT Cẩm Giàng – Hải Dương : + Sau hai năm dân số tỉnh A tăng từ 2 500 000 người lên 2 560 360 người. Hỏi tỉ lệ tăng dân số hàng năm của tỉnh A là bao nhiêu phần trăm (biết trong hai năm tỉ lệ tăng dân số không thay đổi)? + Một học sinh đứng ở mặt đất cách tháp ăng ten (có độ cao 150 m) nhìn thấy đỉnh tháp theo một góc nghiêng lên là 20° và khoảng cách từ mắt đến mặt đất là 1m. Tính khoảng cách từ học sinh đó đến tháp (làm tròn đến mét). + Cho ∆ABC có ba góc nhọn nội tiếp đường tròn tâm O. M là một điểm trên cung nhỏ AC, sao cho AM CM. Từ M hạ ME vuông góc với AC, MF vuông góc với BC. P là trung điểm của AB, Q là trung điểm của FE. a) Chứng minh tứ giác MECF nội tiếp. b) Tia FE cắt AB tại N. Chứng minh: 0 MNP 90.