Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Lai Thành Ninh Bình

Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Lai Thành Ninh Bình Bản PDF Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 - 2023 trường THCS Lai Thành, Ninh Bình

Chào đón quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề kiểm tra và đánh giá giữa học kỳ 2 môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Lai Thành, huyện Kim Sơn, tỉnh Ninh Bình. Đề thi sẽ bao gồm 30% câu hỏi trắc nghiệm và 70% câu hỏi tự luận, với thời gian làm bài là 90 phút.

Đề thi sẽ cung cấp ma trận, đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em tự tin và xác định được điểm số của mình. Dưới đây là một số câu hỏi trắc nghiệm mẫu trong đề thi:

1. Phương trình nào sau đây là phương trình bậc nhất hai ẩn?
a) 2x + 3y = 5
b) 3x - 4y = 7
c) 4x + 2y = 9
d) 5x - 6y = 3

2. Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 14 km/h thì đến B sớm hơn 2 giờ, nếu giảm vận tốc đi 4 km/h thì đến B muộn 1 giờ. Tính vận tốc dự định và thời gian dự định đi hết quãng đường AB.

3. Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tuỳ ý trên cung CB (D khác C và B). Chứng minh tam giác ABE vuông cân và tứ giác CDFE nội tiếp.

Hãy tự tin và chinh phục mọi thách thức trong đề thi này! Chúc các em đạt kết quả cao và thành công trong học tập. Cảm ơn quý thầy cô và các em đã quan tâm và tham gia. Chúc mọi người một ngày vui vẻ và học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Tây Mỗ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Tây Mỗ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn cửa cho một ngôi nhà trong 2 ngày thì xong việc. Nếu người thứ nhất làm trong 4 ngày rồi nghỉ và người thứ hai làm tiếp trong 1 ngày thì xong việc. Hỏi nếu mỗi người làm một mình thì bao lâu xong việc? + Một tàu ngầm đang ở trên mặt biển thì lặn xuống theo phương tạo với mặt nước biển một góc 20°. Hỏi nếu tàu chuyển động theo phương lặn xuống được 200m thì nó ở độ sâu bao nhiêu mét so với mặt nước biển? + Từ điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA; MB (A, B là hai tiếp điểm) và cát tuyến MEK (tia ME nằm giữa hai tia MO và MA). Gọi I là trung điểm của EK a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh: MK.ME = MA2 từ đó chứng minh: ME.MK < MO2. c) Gọi S là giao điểm của MK và AB. Chứng minh MIA đồng dạng BIS và IA.IB = SA.SB + IS2.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 90 phút; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô đi từ tỉnh A đến tỉnh B với một vận tốc đã định. Nếu vận tốc tăng thêm 10 km/h thì thời gian đi được sẽ giảm 1 giờ. Nếu vận tốc giảm bớt 20 km/h thì thời gian đi sẽ tăng thêm 4 giờ. Tính vận tốc và thời gian dự định của ô tô. + Cho hệ phương trình với m là tham số. a. Giải hệ phương trình với m = 2. b. Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x + y = 5. + Cho đường tròn (O;R), BC là dây không đi qua tâm. Các tiếp tuyến của đường tròn tâm O tại B và C cắt nhau ở điểm A. Lấy M thuộc cung nhỏ BC. Kẻ MI, MK, MH lần lượt vuông góc với BC, AB, AC. Chứng minh rằng: 1. Tứ giác BIMK nội tiếp đường tròn. 2. Chứng minh MH.MK = MI2. 3. Gọi BM cắt KI tại E, CM cắt IH tại F. Chứng minh: FE // BC và FE là tiếp tuyến của đường tròn ngoại tiếp tam giác MHF.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Huy Tưởng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Huy Tưởng, huyện Đông Anh, thành phố Hà Nội; đề thi hình thức tự luận 100% với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Huy Tưởng – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Hai tổ làm chung một công việc thì sau 6 giờ sẽ xong. Nếu Tổ I làm trong 5 giờ, Tổ II làm trong 2 giờ thì làm xong 8/15 công việc. Tính thời gian mỗi tổ làm riêng để xong công việc. + Cho Parabol (P): y = x2 và đường thẳng (d): y = 3x + m. a. Vẽ đồ thị (P) trên hệ trục tọa độ Oxy; tìm giao điểm của (d) và (P) bằng phương pháp đại số khi m = -2. b. Tìm m để đường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt. + Cho đường tròn (O; R) và điểm P ở ngoài (O). Qua P kẻ các tiếp tuyến PA, PB với (O) trong đó A, B là các tiếp điểm. Đường thẳng PO cắt AB tại H và cắt cung lớn AB của đường tròn (O) tại C. Kẻ BE vuông góc AC tại E. Gọi M là trung điểm của BE. Tia CM cắt (O) tại điểm thứ hai là N a. Chứng minh tứ giác PAOB nội tiếp. b. Chứng minh HM // AC và HN vuông góc NB. c. Gọi giao điểm của BN và PC là K. Chứng minh K là trung điểm của đoạn thẳng PH.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Tri Phương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 16 tháng 03 năm 2023. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Tri Phương – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Trong tháng đầu hai tổ sản xuất được 800 sản phẩm. Sang tháng thứ hai, tổ I sản xuất vượt mức 12%, tổ II sản xuất giảm 10% so với tháng đầu nên tổng số sản phẩm cả hai tổ làm được trong tháng thứ hai ít hơn tháng đầu 14 sản phẩm. Tính số sản phẩm mỗi tổ làm được trong tháng đầu. + Cho hàm số y = x2 có đồ thị là parabol (P). 1) Vẽ parabol (P) trên hệ trục tọa độ Oxy. 2) Tìm tọa độ các điểm thuộc parabol (P) có tung độ bằng 8. 3) Xác định tọa độ giao điểm của parabol (P) và đường thẳng (d): y = 1/2.x + 3/2 bằng phương pháp đại số. + Cho đường tròn (O). Từ một điểm M nằm bên ngoài đường tròn kẻ hai tiếp tuyến MA, MB (A, B là tiếp điểm). 1) Chứng minh tứ giác MAOB nội tiếp. 2) Gọi H là giao điểm của MO và AB. Kẻ cát tuyến MDC với đường tròn (O) sao cho MD < MC, tia MC nằm giữa hai tia MO và MA. Chứng minh MA2 = MD.MC = MH.MO. 3) Kẻ đường kính AK của đường tròn (O), tia MO cắt CK tại E. Chứng minh tứ giác DCOH nội tiếp và AE // DK.