Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện môn Toán năm 2021 - 2022 phòng GDĐT Di Linh - Lâm Đồng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2021. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2021 – 2022 phòng GD&ĐT Di Linh – Lâm Đồng : + Cho tam giác ABC, đường cao AH. Gọi E và M lần lượt là trung điểm của AB và BC. Qua B kẻ đường thẳng vuông góc với BC và cắt đường thẳng AC tại D, đường thẳng ME cắt BD tại I. Gọi K là giao điểm của AH và CI. Chứng minh K là trung điểm của AH. + Cho a, b,c đôi một khác nhau thỏa: a² – b = b² – c = c² – a. Chứng minh:(a + b)(b + c)(c + a) = 1. + Gia đình bác An có nuôi 3 con bò sữa để tăng thêm thu nhập cho gia đình, trung bình mỗi con bò cho khoảng 2500 lít sữa/năm và bán được khoảng 15500 đồng/lít. Biết rằng tiền chi phí đầu tư, chăm sóc mỗi năm bằng 40% tiền bán sữa. Hãy tính xem mỗi năm gia đình bác An thu nhập thêm được bao nhiêu tiền?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Thừa Thiên Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Trích dẫn Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Thừa Thiên Huế : + Cho tập hợp X = {1; 2; 3; …; 20} gồm 20 số tự nhiên từ 1 đến 20. Một tập hợp A chỉ chứa các phần tử thuộc X được gọi là “tập tốt” nếu không tồn tại hai phần tử a, b thuộc A sao cho a < b và b chia hết cho a. a) Hãy tìm một “tập tốt” có đúng 10 phần tử. b) Gọi A là một “tập tốt” bất kỳ có đúng 10 phần tử. Chứng minh rằng với mọi số tự nhiên m lẻ và m < 20, luôn tồn tại a thuộc A sao cho a chia hết cho m. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O, có đường cao AD và trung tuyển AM. Kẻ đường kính AE, tia EM cắt AD tại H và cắt (O) tại F (F khác E). a) Chứng minh M là trung điểm EH và BC2 = 4.ME.MF. b) Chứng minh BC là tiếp tuyến của đường tròn ngoại tiếp tam giác FBH. c) Chứng minh tứ giác AFDM nội tiếp và BFD = MAC.
Đề Olympic chuyên Toán THCS lần 1 năm 2023 - 2024 trường chuyên Hạ Long Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic chuyên môn Toán dành cho học sinh THCS lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic chuyên Toán THCS lần 1 năm 2023 – 2024 trường chuyên Hạ Long – Quảng Ninh : + Cho một mạng lưới các ô vuông kích thước 5 5 trong đó có khuyết một hình vuông kích thước 2 2 như hình vẽ. Một người đứng ở điểm A cần di chuyển đến điểm B, biết mỗi bước đi chỉ có thể đi lên trên hoặc sang phải theo đỉnh mỗi ô vuông kích thước 1 1. Hỏi có bao nhiêu cách để người đó có thể di chuyển từ A đến B. + Cho tam giác ABC không cân có đường tròn nội tiếp I tiếp xúc với các cạnh BC CA AB lần lượt tại D E F. Điểm K là hình chiếu vuông góc của D trên đường thẳng EF đường thẳng qua K vuông góc với IK cắt các đường thẳng CA BA lần lượt tại V U. a) Chứng minh rằng tứ giác AVIU nội tiếp và UF VE. b) Chứng minh rằng KF DB KE DC. c) Gọi E’ là tiếp điểm của đường tròn bàng tiếp góc B của tam giác ABC với AC F là tiếp điểm của đường tròn bàng tiếp góc C của tam giác ABC với AB. Chứng minh các điểm E F U V cùng thuộc một đường tròn. + Chứng minh rằng với mọi số nguyên dương m số 4(8 7) m không thể viết được dưới dạng tổng của ba số chính phương (số chính phương là bình phương của một số nguyên).
Đề khảo sát HSG Toán 9 lần 3 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hà Giang : + Cho a, b, c là các số nguyên, đôi một nguyên tố cùng nhau thỏa mãn (a – c)(b – c) = c2. Chứng minh tích abc là số chính phương. + Cho a, b là các số thực không âm thỏa mãn điều kiện a + b = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a4 + 1)(b4 + 1) – 4ab. + Cho tam giác ABC không cân (AB < AC), nội tiếp đường tròn tâm O. Gọi AD (D thuộc BC) là đường cao của tam giác ABC, AM là đường kính của đường tròn tâm O, K là hình chiếu của B lên AM. a) Chứng minh ABDK là tứ giác nội tiếp và DK vuông góc với AC. b) Gọi E, F lần lượt là trung điểm của đoạn thẳng BD, CM. Chứng minh AEF = 90°.