Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối kỳ 2 Toán 9 năm 2021 - 2022 trường THCS Đống Đa - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 trường THCS Đống Đa, quận Bình Thạnh, thành phố Hồ Chí Minh. Trích dẫn đề kiểm tra cuối kỳ 2 Toán 9 năm 2021 – 2022 trường THCS Đống Đa – TP HCM : + Giải bài toán bằng cách lập hệ phương trình: Trong kỳ thi học kì II môn Toán lớp 9, một phòng thi của trường có 24 thí sinh dự thi. Các thí sinh đều phải làm bài trên giấy thi của trường phát cho, cuối buổi thi, sau khi thu bài, giám thị coi thi đếm được tổng số tờ là 59 tờ giấy thi. Hỏi trong phòng thi có bao nhiêu thí sinh làm bài 2 tờ giấy thi, bao nhiêu thí sinh làm bài 3 tờ giấy thi? Biết rằng có 3 thí sinh chỉ làm 1 tờ giấy thi. + Công ty A thực hiện một cuộc khảo sát để tìm hiểu về mối liên hệ giữa y (sản phẩm) là số lượng sản phẩm T bán ra với x (đồng) là giá bán ra của mỗi sản phẩm T và nhận thấy rằng y = ax + b (a và b là hằng số). Biết với giá bán là 500 000 đồng một sản phẩm thì số lượng sản phẩm bán ra là 1300 (sản phẩm); với giá bán là 540 000 đồng một sản phẩm thì số lượng sản phẩm bán ra là 1600 (sản phẩm). a) Xác định a và b. b) Bằng phép tính, hãy tính số lượng sản phẩm bán ra với giá bán là 480 000 đồng một sản phẩm? + Người ta thả một quả trứng vào cốc thủy tinh hình trụ có chứa nước, trứng chìm hoàn toàn xuống đáy cốc. Hỏi thể tích quả trứng đó là bao nhiêu cm? (làm tròn đến hàng đơn vị). Biết cốc thủy hình trụ có đường kính đáy 10cm và nước trong cốc dâng thêm 7,5 mm. (Công thức tính thể tích hình trụ: V = pir2h) với r là bán kính đáy và h là chiều cao của hình trụ.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề kiểm tra học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu người thứ nhất làm riêng trong 6 ngày rồi dừng lại và người thứ hai làm tiếp công việc đó trong 8 ngày thì cả hai người hoàn thành được 45% công việc. Hỏi nếu mỗi người làm riêng thì trong bao nhiêu ngày mới xong công việc trên? + Một đoạn ống nước có dạng hình trụ với chiều dài 4 m, bán kính đáy bằng 0,1m. Tính diện tích cần sơn để phủ kín mặt ngoài của đoạn ống nước trên theo đơn vị mét vuông (bỏ qua bề dày của ống nước và lấy pi = 3,14). + Cho phương trình bậc hai (x là ẩn số). 1) Tìm điều kiện của m để phương trình trên có hai nghiệm phân biệt. 2) Tìm tất cả giá trị của m để phương trình trên có hai nghiệm phân biệt thỏa mãn.
Đề học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Bắc Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND quận Bắc Từ Liêm, thành phố Hà Nội. Trích dẫn đề học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Bắc Từ Liêm – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình hoặc phương trình: Hai tổ công nhân gồm 15 người may được tất cả 276 bộ quần áo bảo hộ y tế. Tính số người của mỗi tổ, biết mỗi người tổ 1 may được 20 bộ quần áo bảo hộ y tế, mỗi người tổ 2 may được 17 bộ quần áo bảo hộ y tế. + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x² và đường thẳng (d): y = mx + 2 (với m là tham số) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt với mọi giá trị của m. b) Gọi hoành độ giao điểm của (d) và (P) là x1 và x2. Tìm m để x1 và x2 thỏa mãn: x1(x2 – 2) + x2(x1 – 2) = 3. + Cho đường tròn tâm O, bán kính R, dây AB cố định không đi qua tâm. Đường kính CD vuông góc với dây AB tại K (D thuộc cung nhỏ AB). Trên đoạn BK lấy điểm F, tia DF cắt đường tròn tại điểm thứ hai là M. 1) Chứng minh rằng: Tứ giác CKFM nội tiếp được. 2) Tia CM cắt tia AB tại E. Chứng minh rằng: DF.DM + CM.CE = 4R2 3) Tia CF cắt đường tròn tâm O tại điểm thứ hai là N, tia MK cắt đường tròn tâm O tại điểm thứ hai là G. Chứng minh rằng: GN // AB.
Đề kiểm tra cuối kì 2 Toán 9 năm 2021 - 2022 trường THCS Cát Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đánh giá chất cuối kì học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS Cát Linh, quận Đống Đa, thành phố Hà Nội. Trích dẫn đề kiểm tra cuối kì 2 Toán 9 năm 2021 – 2022 trường THCS Cát Linh – Hà Nội : + Cho hai biểu thức A và B 1/ Tính giá trị biểu thức A khi x = 9. 2/ Rút gọn biểu thức B. 3/ Đặt C = B/A. Tìm giá trị của x để biểu thức C có giá trị bằng 2. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm chung một công việc thì sau 2 giờ làm xong. Nếu hai người làm riêng thì thời gian người thứ hai làm xong công việc đó nhiều hơn thời gian người thứ nhất làm là 3 giờ. Hỏi mỗi người làm riêng thì sau bao nhiêu giờ mới xong công việc trên? + Một hộp sữa Ông Thọ có chiều cao 14cm và đáy là hình tròn có đường kính 10cm. Tính thể tích hộp sữa (lấy pi = 3,14).
Đề học kì 2 Toán 9 năm 2021 - 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2021 – 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn đề học kì 2 Toán 9 năm 2021 – 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB dài 108 km. Hai ô tô cùng khởi hành một lúc để đi từ A đến B. Biết ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai 6 km nên ô tô thứ hai đến B muộn hơn ô tô thứ nhất là 12 phút. Tính vận tốc của mỗi xe. + Một bể nước hình trụ có bán kính hình tròn đáy là 0,5m, chiều cao là 1m. Một máy bơm bơm nước vào bể, mỗi phút bơm được 20 lít. Sau khi bơm được nửa giờ người ta tắt máy. Hỏi nước đã tràn bể hay chưa? (lấy pi = 3,14). + Cho parabol (P): y = x² và đường thẳng (d): y = mx – m + 1/2 a) Khi m = 3, tìm tọa độ giao điểm của (d) và (P) b) Tìm m để (d) cắt (P) tại hai điểm phân biệt đối xứng nhau qua trục tung.