Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kỳ 2 Toán 9 năm 2023 - 2024 sở GDĐT Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra cuối học kỳ 2 Toán 9 năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Một tổ có kế hoạch sản xuất 350 sản phẩm theo năng suất dự định. Nếu năng suất tăng lên 10 sản phẩm mỗi ngày thì tổ hoàn thành sớm 2 ngày so với giảm năng suất 10 sản phẩm mỗi ngày. Hỏi tổ đó đã dự kiến làm bao nhiêu sản phẩm trong một ngày? + Cho đường tròn O R. Hai đường kính AB và CD vuông góc với nhau. Trên tia đối của tia CD lấy điểm S SA cắt đường tròn tại M tiếp tuyến của đường tròn tại M cắt CD ở P, BM cắt CD ở T. a) Chứng minh tứ giác AMTO nội tiếp. b) Chứng minh rằng P là trung điểm của ST. c) Biết PM R tính TA SM theo R. + Cho các số thực dương abc thỏa mãn ab bc ca abc. Chứng minh rằng 512.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Thứ Sáu ngày 16 tháng 04 năm 2021, phòng Giáo dục và Đạo tạo quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2020 – 2021. Đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô đi xuôi dòng từ A đến B cách nhau 40km sau đó đi ngược dòng từ B về A. Cho biết thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút, vận tốc dòng nước là 3km/h và vận tốc riêng của ca nô không đổi. Tính vận tốc riêng của ca nô. + Người ta trải một chiếc khăn hình tròn có bán kính 1m trên một mặt bàn có mặt hình tròn bán kính 60 cm. Tính diện tích phần khăn rủ xuống (làm tròn đến chữ số hàng đơn vị). + Cho (O;R) và điểm A cố định bên ngoài đường tròn (O). Qua A, kẻ đường thẳng d cắt (O) tại H, K (AH < AK). Gọi I là trung điểm của HK. Kẻ tiếp tuyến AB, AC tới (O), (B, C là hai tiếp điểm và B thuộc cung lớn HK). 1) Chứng minh: Tứ giác ABOI nội tiếp. 2) Gọi G là giao điểm của OA và BC. Chứng minh: AC2 = AH.AK và AKO = AGH. 3) Hai tiếp tuyến tại H, K của đường tròn (O) cắt nhau tại S. Chứng minh: GC là tia phân giác của góc HGK và ba điểm B, C, S thẳng hàng.
Đề thi cuối kì 2 Toán 9 năm 2020 - 2021 sở GDĐT thành phố Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối kì 2 Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Đà Nẵng; kỳ thi được diễn ra vào sáng thức Ba ngày 20 tháng 04 năm 2021.
Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT Bắc Từ Liêm - Hà Nội
Đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Bắc Từ Liêm – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Bắc Từ Liêm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi là 124m. Nếu tăng chiều dài thêm 5m và chiều rộng thêm 3m thì diện tích mảnh vườn tăng thêm 255m2. Tính chiều dài và chiều rộng của mảnh vườn ban đầu? + Tính diện tích mặt bàn hình tròn có đường kính 1,2 m (kết quả làm tròn đến chữ số thập phân thứ hai). + Cho nửa đường tròn (O;R), đường kính AB. Trên tia tiếp tuyến kẻ từ A của nửa đường tròn này lấy điểm C sao cho AC > R. Từ C kẻ tiếp tuyến thứ hai CD của nửa đường tròn (O;R), với D là tiếp điểm. Gọi H là giao điểm của AD và OC. 1) Chứng minh: ACDO là tứ giác nội tiếp. 2) Đường thẳng BC cắt đường tròn (O;R) tại điểm thứ hai là M. Chứng minh: CD2 = CM.CB. 3) Gọi K là giao điểm của AD và BC. Chứng minh: MHC = CBO và CM/CB = KM/KB.
Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT Hai Bà Trưng - Hà Nội
Đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hai Bà Trưng – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào thứ Năm ngày 15 tháng 04 năm 2021. Trích dẫn đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi bằng 34 m. Nếu tăng chiều dài thêm 2 m và tăng chiều rộng thêm 3 m thì diện tích tăng thêm 50 m2. Tính chiều dài và chiều rộng của mảnh vườn. + Một thuyền đánh cá chuẩn bị 10 thùng dầu để ra khơi, mỗi thùng là một hình trụ có đường kính đáy là 0,6m, chiều cao là 1,5m. Hỏi thuyền đó đã chuẩn bị bao nhiêu lít dầu? (bỏ qua độ dày của vỏ thùng). + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = (2m – 1)x – m2 + 2 (m là tham số). 1) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P) khi m = 2. 2) Tìm giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn.