Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 10 môn Toán vòng 2 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội

Nội dung Đề HSG lớp 10 môn Toán vòng 2 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà NộiBài toán sản xuấtBài toán "Lá cờ Việt Nam"Bài toán hàm số Đề HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà Nội Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 vòng 2 năm học 2022-2023 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em ôn tập và chuẩn bị tốt cho kỳ thi. Bài toán sản xuất Trong bài toán này, có ba nhóm máy A, B, C được sử dụng để sản xuất hai loại sản phẩm I và II. Bảng thông tin về số máy cần thiết từng nhóm để sản xuất mỗi loại sản phẩm được cung cấp. Mỗi sản phẩm mang lại một lợi nhuận khác nhau. Bài toán yêu cầu tìm phương án sản xuất để có lãi cao nhất. Bài toán "Lá cờ Việt Nam" Bài toán liên quan đến tỷ số vàng, một khái niệm từ toán học và nghệ thuật. Tỷ số vàng thường được ký hiệu bằng ký hiệu (phi) trong bảng chữ cái Hy Lạp. Nội dung bài toán đưa ra một ví dụ về tỷ số vàng và mối liên hệ với hình chữ nhật, cùng với quy định về quốc kỳ nước Cộng hòa xã hội chủ nghĩa Việt Nam. Bài toán hàm số Trong bài toán này, đề cập đến hình chữ nhật, liên quan đến hàm số và diện tích tam giác. Em được yêu cầu tìm tọa độ điểm C trên cung AB của đồ thị parabol P sao cho tam giác ABC có diện tích lớn nhất và tính diện tích đó. Tất cả các bài toán trong đề thi HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà Nội đều mang tính chất thực tế và cần sự tư duy logic và kiến thức toán học vững chắc từ các em học sinh. Chúng tôi hy vọng rằng các em sẽ vượt qua thử thách này một cách xuất sắc và phấn đấu học tập hơn nữa trong tương lai.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 10 năm 2023 - 2024 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 10 năm 2023 – 2024 sở GD&ĐT Hải Dương : + Một xưởng cơ khí có hai công nhân là An và Bình. Xưởng sản xuất hai loại sản phẩm I và II. Mỗi sản phẩm loại I bán lãi 500 nghìn đồng, mỗi sản phẩm loại II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm loại I thì An phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm loại II thì An phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể tham gia làm hai loại sản phẩm tại cùng một thời điểm. Biết rằng trong một tháng An không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Tính số tiền lãi lớn nhất trong một tháng của xưởng đó. + Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi S là tập hợp các số tự nhiên có 3 chữ số và chia hết cho 6 được lập từ các chữ số thuộc tập A. Tính số phần tử của tập S. + Cho tam giác nhọn ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi HEK lần lượt là chân đường cao kẻ từ các đỉnh ABC. Gọi diện tích các tam giác ABC và HEK lần lượt là S và 0 S. Biết G là trọng tâm tam giác ABC và 0 3 1 4 S S. Tính độ dài đoạn OG.
Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Quảng Xương 4 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Quảng Xương 4, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 101 – 102. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Quảng Xương 4 – Thanh Hóa : + Trong mặt phẳng tọa độ Oxy cho tam giác ∆ABC có A B (4;0) (1;0). Gọi M là điểm nằm trên tia Oy. Khi 2MA MB đạt giá trị nhỏ nhất thì tung độ của M là một số chia hết cho số nào trong các số sau đây? + Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD có tâm I (3;-1), điểm M thuộc cạnh CD sao cho MC MD 2. Tìm tọa độ đỉnh A của hình vuông ABCD biết đường thẳng AM có phương trình 2 40 x y và đỉnh A có tung độ âm. + Lớp 10A có 30 học sinh gồm 15 học sinh nam và 15 học sinh nữ. Trong một buổi chào cờ đầu tuần lớp 10A xếp thành một hàng dọc nhưng nhà trường yêu cầu các bạn nam và nữ xem kẽ nhau. Hỏi có bao nhiêu cách xếp.
Đề HSG cấp trường Toán 10 năm 2023 - 2024 trường THPT Diễn Châu 3 - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Diễn Châu 3, tỉnh Nghệ An. Đề thi với nội dung gồm 04 phần: + Phần 1. Câu trắc nghiệm nhiều phương án lựa chọn. + Phần 2. Câu trắc nghiệm đúng / sai. + Phần 3. Câu trắc nghiệm trả lời ngắn. + Phần 4. Câu hỏi tự luận.
Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Quế Võ 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Quế Võ 1, tỉnh Bắc Ninh. Đề thi được biên soạn theo cấu trúc định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Phần 1: Trắc nghiệm khách quan: 25 câu (10 điểm); Phần 2: Trắc nghiệm đúng sai: 2 câu (4 điểm); Phần 3: Trắc nghiệm trả lời ngắn: 6 câu (6 điểm). Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Quế Võ 1 – Bắc Ninh : + Một cửa hàng bán bưởi Da Xanh của Bến Tre với giá bán mỗi quả là 50000 đồng. Với giá bán này thì mỗi ngày cửa hàng chỉ bán được 40 quả. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 1000 đồng thì số bưởi bán tăng thêm được là 10 quả. Giá nhập về ban đầu cho mỗi quả là 28000 đồng. Giá bán mỗi quả Bưởi là a (nghìn đồng) để cửa hàng thu được lợi nhuận cao nhất. Tính a. + Một người quan sát đỉnh của một tòa tháp từ hai vị trí khác nhau của tòa nhà. Lần đầu tiên người đó quan sát đỉnh tháp từ tầng trệt với phương nhìn tạo với phương nằm ngang 35 và lần thứ hai người này quan sát tại sân thượng của cùng tòa nhà đó với phương nhìn tạo với phương nằm ngang 15 (tham khảo hình vẽ). + Một chiếc cổng hình parabol có chiều cao 4m và chiều ngang 8m. Người ta muốn thiết kế một cánh cổng bằng kính hình chữ nhật đặt ngay giữa cổng parabol đồng thời làm hai cánh cửa phụ hai bên (tham khảo hình vẽ). Nếu muốn chiều cao của phần cổng hình chữ nhật trong khoảng từ 1,75m đến 3m thì chiều ngang của cánh cổng (đoạn CD) hẹp nhất là m mét và rộng nhất là n mét. Khi đó tính giá trị m n.