Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Châu Thành Bến Tre

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Châu Thành Bến Tre Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GD ĐT Châu Thành Bến Tre Đề học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GD ĐT Châu Thành Bến Tre Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022-2023 do Phòng Giáo dục và Đào tạo huyện Châu Thành, tỉnh Bến Tre tổ chức. Kỳ thi sẽ diễn ra vào ngày 04 tháng 02 năm 2023. Đây là cơ hội cho các em học sinh lớp 9 thể hiện kiến thức và khả năng của mình trong môn Toán. Hy vọng những bài tập trong đề thi sẽ giúp các em rèn luyện kỹ năng giải quyết vấn đề và nâng cao trình độ học tập của mình. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày … tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Cầu Giấy – Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1(c + 1). + Cho tam giác ABC nhọn, không cân (AB < AC). Các đường cao AD, BE, CF của tam giác ABC đồng qui tại H. Gọi M là trung điểm của BC; I là trung điểm của AH. 1) Chứng minh IEM = 90°. 2) Đường thẳng qua I và vuông góc với HM cắt HM, EF lần lượt tại N, S. Đoạn thẳng IM cắt EF tại J. Chứng minh IJ.IM = IN.IS và SH song song với BC. 3) Đường thẳng SI cắt AB, AC lần lượt tại P, Q. Chứng minh I là trung điểm của PQ. + Xét tập hợp A gồm các số nguyên dương thỏa mãn đồng thời các điều kiện sau: (i) Phần tử lớn nhất của tập hợp A là 100. (ii) Với mọi phần tử x thuộc A, nếu x không phải là phần tử nhỏ nhất thì tồn tại a, b, c thuộc A (a, b, c không nhất thiết phân biệt) sao cho x = a + b + c. 1) Chứng minh tất cả các phần tử của tập hợp A đều là số chẵn. 2) Tập hợp A có nhiều nhất là bao nhiêu phần tử?
Đề khảo sát HSG Toán 9 lần 1 năm 2022 - 2023 trường THCS Nguyễn Hồng Lễ - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội dự tuyển học sinh giỏi cấp tỉnh môn Toán 9 lần 1 năm học 2022 – 2023 trường THCS Nguyễn Hồng Lễ, thành phố Sầm Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2022.
Đề học sinh giỏi cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Chứng minh rằng nếu n + 1 và 2n + 1 (n thuộc N) đều là số chính phương thì n chia hết cho 24. + Hai đội bóng bàn A và B của hai trường trung học cơ sở thi đấu giao hữu. Biết rằng mỗi đấu thủ của đội A phải lần lượt gặp đấu thủ của đội B một lần và số trận đấu gấp đôi tổng số đấu thủ của hai đội. Tính số đấu thủ của mỗi đội. + Giả sử mỗi điểm trong mặt phẳng được tô bằng một trong hai màu trắng hoặc đen. Chứng minh tồn tại một hình chữ nhật có đỉnh cùng màu.