Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải nhanh hình học không gian bằng máy tính Casio - Hà Ngọc Toàn

Việc BGD ra đề thi trắc nghiệm đối với môn Toán đa phần đối với học sinh là rất mới nhất là tốc độ để giải quyết các bài toán về hình học không gian. Để giúp các em có cách nhanh nhất giải các bài toán trắc nghiệm thầy biên soạn chuyên đề sử dụng casio giải nhanh hình học không gian, mặc dù ở phần này casio chỉ hỗ trợ chúng ta một phần rất nhỏ nhưng nó cũng giảm bớt được thời gian chọn đáp án, các em chú ý rằng phương pháp này không phải là toàn năng và nhanh nhất để giải toán, có những bài sử dụng phương pháp truyền thống giải nhanh hơn rất nhiều. Vì thế các em coi phương pháp này là để tham khảo và học hỏi thêm. Phương pháp tọa độ hóa trong không gian ta cần phải thực hiện được các yêu cầu sau: + Bước 1: Chọn hệ trục tọa độ Oxyz thích hợp ( chú ý đến vị trí của gốc O), chọn hệ trục sao cho có 3 đường thẳng đôi một vuông góc với nhau. + Bước 2: Xác định tọa độ các điểm có liên quan ví dụ đề bài yêu cầu tính thể tích của khối chop SABC thì chúng ta chỉ cần tìm tọa độ các điểm S;A;B;C và khi xác định tọa độ các điểm ta có thể dựa vào những yếu tố sau: [ads] – Ý nghĩa hình học của tọa độ điểm khi các điẻm nằm trên cá trục tọa độ, mặt phẳng tọa độ ví dụ điểm A nằm trên truc Ox khi đó A( a;0;0) hay điểm A nằm trên mặt phẳng oxy khi đó A( a;b;0) , chú ý việc xác định tọa độ điểm là quan trọng nhất nên rất cẩn trọng, và việc xác định tọa độ điểm để tìm ra A(x;y;z) thì từ điểm đó ta phải kẻ vuông góc vào các hệ trục tọa độ đã chọn. – Dựa vào các quan hệ hình học bằng nhau, vuông góc, song song, cùng phương, thẳng hàng, điểm chia đoạn thẳng để tìm tọa độ. – Xem điểm cần tìm là giao điểm của đường thẳng, mặt phẳng. – Dựa vào các quan hệ về góc của đường thẳng, mặt phẳng. + Bước 3: Sử dụng kiến thức về tọa độ để giải quyết bài toán.

Nguồn: toanmath.com

Đọc Sách

Bài giảng phương trình đường thẳng
Tài liệu gồm 45 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình đường thẳng, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm vững khái niệm vectơ chỉ phương của đường thẳng, góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. + Trình bày và vận dụng được các công thức tính khoảng cách, góc. + Trình bày được cách viết phương trình tham số của đường thẳng. + Trình bày được các vị trí tương đối của hai đường thẳng, của đường thẳng và mặt phẳng và của đường thẳng với mặt cầu. Vận dụng được các công thức để xét vị trí tương đối của hai đường thẳng; của đường thẳng với mặt phẳng và của đường thẳng với mặt cầu. Kĩ năng : + Biết cách viết phương trình tham số, phương trình chính tắc của đường thẳng. + Biết cách tính khoảng cách, tính góc. + Biết cách xét vị trí tương đối của hai đường thẳng, vị trí tương đối của đường thẳng với mặt phẳng và vị trí tương đối của đường thẳng với mặt cầu. I. LÍ THUYẾT TRỌNG TÂM I. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. – Bài toán 1: Xác định vectơ chỉ phương của đường thẳng. – Bài toán 2: Viết phương trình đường thẳng khi tìm được một vectơ chỉ phương và điểm thuộc đường thẳng. – Bài toán 3: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 2 : Các vấn đề về góc. – Bài toán 1: Góc giữa đường thẳng và mặt phẳng. – Bài toán 2: Góc giữa hai đường thẳng. Dạng 3 : Khoảng cách. – Bài toán 1: Khoảng cách từ một điểm đến đường thẳng. – Bài toán 2: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 4 : Vị trí tương đối. – Bài toán 1: Vị trí tương đối giữa đường thẳng và mặt phẳng. – Bài toán 2: Vị trí tương đối giữa hai đường thẳng. – Bài toán 3: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 5 : Một số bài toán cực trị.
Bài giảng phương trình mặt phẳng
Tài liệu gồm 29 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình mặt phẳng, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm được cách xác định mặt phẳng, vectơ pháp tuyến của mặt phẳng. + Nắm được công thức tính khoảng cách từ điểm đến mặt phẳng, góc giữa hai mặt phẳng. + Nhận biết được vị trí tương đối giữa đường thẳng với mặt phẳng, giữa mặt phẳng với mặt cầu. Kĩ năng : + Viết được phương trình tổng quát của mặt phẳng. + Xác định được vectơ pháp tuyến trong các trường hợp. + Tính được khoảng cách và góc. + Xác định được vị trí tương đối và vận dụng vào giải bài tập. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. – Bài toán 1. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một vectơ pháp tuyến. – Bài toán 2. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một cặp vectơ chỉ phương. – Bài toán 3. Lập phương trình mặt phẳng liên quan đến khoảng cách. – Bài toán 4. Viết phương trình mặt phẳng liên quan đến mặt cầu. – Bài toán 5. Phương trình mặt phẳng đoạn chắn. Dạng 2 : Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. – Bài toán 1. Vị trí tương đối giữa hai mặt phẳng. – Bài toán 2. Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 3 : Khoảng cách từ một điểm đến mặt phẳng. Dạng 4 : Góc giữa hai mặt phẳng. Dạng 5 : Một số bài toán cực trị.
Bài giảng hệ tọa độ trong không gian
Tài liệu gồm 17 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề hệ tọa độ trong không gian, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm vững định nghĩa hệ trục tọa độ Oxyz trong không gian, các khái niệm về tọa độ điểm, tọa độ vectơ. + Nắm vững biểu thức tọa độ các phép toán vectơ và các tính chất. + Nắm vững biểu thức tọa độ của tích vô hướng, tích có hướng của hai vectơ và các ứng dụng. + Nắm vững được phương trình mặt cầu, điều kiện để một phương trình là phương trình mặt cầu. Kĩ năng : + Biết tìm tọa độ của một điểm, một vectơ. Tính được tổng, hiệu các vectơ, tích của vectơ với một số. + Tính được tích vô hướng của hai vectơ và các ứng dụng: tính độ dài vectơ, tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ. + Xác định được tích có hướng của hai vectơ và vận dụng làm được một số bài toán. + Viết phương trình mặt cầu biết tâm và bán kính. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Sử dụng các định nghĩa và khái niệm có liên quan đến điểm, vectơ: Tọa độ của điểm, vectơ; độ dài vectơ … và các phép toán vectơ … để tính tổng, hiệu các vectơ; tìm tọa độ trọng tâm tam giác. Dạng 2 : Tích có hướng và ứng dụng. – Bài toán 1. Tìm vectơ tích có hướng. + Để tính tích có hướng của hai vectơ, ta áp dụng công thức. – Bài toán 2. Ứng dụng của tích có hướng để chứng minh tính đồng phẳng. + Ba vectơ a b c đồng phẳng. + Bốn điểm A, B, C, D tạo thành tứ diện. – Bài toán 3. Ứng dụng của tích có hướng để tính diện tích và thể tích. + Diện tích hình bình hành. + Tính diện tích tam giác. + Tính thể tích hình hộp. + Tính thể tích tứ diện. Dạng 3 : Phương trình mặt cầu. Mặt cầu tâm I(a;b;c) và bán kính R có phương trình: (x – a)2 + (y – b)2 + (z – c)2 = R2.
Bài toán tương giao trong không gian Oxyz
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Lê Thảo (THPT Nguyễn Thị Minh Khai, thành phố Hà Nội) và thầy giáo Bùi Sỹ Khanh (THPT Trần Cao Vân, thành phố Hồ Chí Minh), hướng dẫn phương pháp giải bài toán tương giao trong không gian Oxyz – một dạng toán vận dụng – vận dụng cao (VD – VDC) thường xuất hiện trong các đề thi thử tốt nghiệp THPT môn Toán. I. NHẮC LẠI LÝ THUYẾT 1. Tương giao giữa mặt cầu và mặt phẳng. Trong không gian Oxyz, cho mặt phẳng P By C D Ax z 0 và mặt cầu 2 2 2 2 S x a y b z c R có tâm I a b c và bán kính R khi đó: – Nếu d I P R thì mặt cầu S và P không có điểm chung. – Nếu d I P R thì mặt cầu S và P có điểm chung duy nhất là H (mặt phẳng tiếp xúc với mặt cầu tại H) và IH P. – Nếu d I P R thì mặt cầu S và cắt mặt phẳng P theo giao tuyến là đường tròn tâm H bán kính r ta có: + Gọi H là hình chiếu vuông góc của I lên P và 2 2 2 I P r IH R d IH. + Cho điểm M nằm trong mặt cầu S mặt phẳng P đi qua M cắt S theo giao tuyến là đường tròn có bán kính r nhỏ nhất IM P. + Cho điểm M nằm trong mặt cầu S mặt phẳng P đi qua M cắt S theo giao tuyến là đường tròn có bán kính r lớn nhất P đi qua 2 điểm I và M. 2. Tương giao giữa mặt cầu và đường thẳng. Trong không gian Oxyz, đường thẳng và mặt cầu S có tâm I và bán kính R khi đó: – Nếu d I R thì mặt cầu S và không có điểm chung. – Nếu d I R thì mặt cầu S và có điểm chung duy nhất là H khi đó IH. – Nếu d I R thì mặt cầu S và cắt đường thẳng tại hai điểm A B ta có một số kết quả sau: + Gọi H là trung điểm AB IH và 2 2 2 4 I I AB d R d IH. + Cho điểm M khi đó đường thẳng đi qua M cắt S tại hai điểm A B sao cho độ dài AB lớn nhất là đường thẳng đi qua 2 điểm M và I. + Cho điểm M nằm trong mặt cầu S đường thẳng đi qua M cắt S tại hai điểm A B sao cho độ dài AB nhỏ nhất là đường thẳng đi qua M và vuông góc IM. II. MỘT SỐ VÍ DỤ MINH HỌA III. BÀI TẬP RÈN LUYỆN