Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hệ thống các khái niệm cơ bản và định lý hình học THCS (hình học phẳng)

Tài liệu gồm 56 trang, hệ thống các khái niệm cơ bản và định lý hình học THCS (hình học phẳng). ĐẶC ĐIỂM CHUNG CỦA BỘ MÔN HÌNH HỌC: Kiến thức về bộ môn toán nói chung, bộ môn hình học nói riêng được xây dựng theo một hệ thống chặt chẽ: Từ Tiên đề đến Định nghĩa các Khái niệm – Định lý – và Hệ quả. Đối với những bài toán thông thường, học sinh chỉ cần vận dụng một vài khái niệm, định lý, hệ quả để giải. Đối với những bài toán khó, để xác định hướng giải (cũng như để giải được) học sinh cần nắm được không những hệ thống kiến thức (lý thuyết) mà còn cần nắm chắc cả hệ thống bài tập, để vận dụng chúng vào giải bài tập mới. Do đó để giải tốt các bài toán hình học, học sinh cần: a/ Nắm chắc hệ thống kiến thức về lý thuyết. b/ Nắm chắc hệ thống bài tập. c/ Biết cách khai thác giả thiết nhằm đọc hết những thông tin tiềm ẩn trong giả thiết, nắm chắc, nắm đầy đủ cái ta có, suy ra cái ta sẽ có (càng nhiều càng tốt). Từ đó giúp ta xây dựng hướng giải, vẽ được đường phụ cũng như giúp ta có thể giải được bài toán bằng nhiều cách. Nội dung ở cột Hình vẽ, khai thác ở bảng tổng hợp dưới đây nhằm giúp học sinh tập dượt suy ra cái ta sẽ có ở nội dung Nếu có ….. Ta có ….. d/ Biết cách tìm hiểu câu hỏi (kết luận): + Nắm chắc các phương pháp chứng minh từng dạng toán (trong đó cần hết sức lưu ý định nghĩa các khái niệm). + Biết đưa bài toán về trường hợp tương tự. + Nắm được ý nghĩa của câu hỏi để có thể chuyển sang dạng tương đương. Ví dụ để chứng minh biểu thức M không phụ thuộc vị trí của cát tuyến d khi d quay quanh điểm O ta cần chứng minh M = hằng số. Tài liệu này tổng hợp, hệ thống các khái niệm và định lý (trong phần hình học phẳng) trong chương trình hình học trung học cơ sở bằng cách tổng hợp tất cả các khái niệm, định lý (liên quan đến từng khái niệm) về một mối. Trên cơ sở đó giúp học sinh ôn tập một cách tổng hợp các khái niệm, định lý để vận dụng vào giải toán. Đề nghị các trường triển khai đến học sinh, giáo viên để nghiên cứu vận dụng. Các khái niệm, định lý trong tài liệu này được chia ra các phần chính như sau: 1/ ĐƯỜNG THẲNG – ĐOẠN THẲNG – TIA – GÓC – QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. 2/ TAM GIÁC – TAM GIÁC CÂN – TAM GIÁC VUÔNG – TAM GIÁC VUÔNG CÂN – TAM GIÁC ĐỀU. 3/ TỨ GIÁC – HÌNH THANG – HÌNH BÌNH HÀNH – HÌNH CHỮ NHẬT – HÌNH THOI – HÌNH VUÔNG – ĐA GIÁC. 4/ ĐƯỜNG TRÒN. Nội dung tài liệu được thiết kế theo dạng bảng gồm 4 cột: + Khái niệm: Nêu tên khái niệm. Trong từng khái niệm có ghi chú khái niệm đó được học ở khối lớp nào trong chương trình hình học THCS để học sinh vận dụng phù hợp với khối lớp đang học. + Nội dung: Nêu định nghĩa khái niệm, các định lý, nhận xét liên quan đến khái niệm đó. + Hình vẽ – Khai thác: – Hình vẽ minh họa. – Giúp học sinh tìm tòi, khai thác dưới dạng Nếu có ….. thì ta có 1) – 2) – 3) … để tăng thêm dữ liệu phục vụ cho giải bài toán liên quan đến khái niệm đó. + Cách chứng minh: Nếu các cách chứng minh hình học. VD chứng minh hai đường thẳng song song. Đây chỉ là tài liệu tham khảo, rất mong sự đóng góp ý kiến của đội ngũ giáo viên để Phòng Giáo dục có thể điều chỉnh, hoàn thiện tài liệu này.

Nguồn: toanmath.com

Đọc Sách

Các bài toán về phương trình nghiệm nguyên
Nội dung Các bài toán về phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Các bài toán về phương trình nghiệm nguyên Các bài toán về phương trình nghiệm nguyên Tài liệu này bao gồm 405 trang và được trích từ một cuốn sách chuyên về các bài toán liên quan đến phương trình nghiệm nguyên. Trong tài liệu này, các bài toán được trình bày một cách chi tiết và cụ thể, giúp người đọc dễ hiểu và áp dụng vào thực tế. Bạn sẽ tìm thấy nhiều cách tiếp cận và giải quyet cho các bài toán khó khăn trong lĩnh vực này, từ cơ bản đến nâng cao. Việc tìm hiểu và áp dụng kiến thức từ tài liệu này sẽ giúp bạn nâng cao kỹ năng giải quyet các bài toán liên quan đến phương trình nghiệm nguyên một cách hiệu quả.
Ứng dụng đồng dư thức trong giải toán số học
Nội dung Ứng dụng đồng dư thức trong giải toán số học Bản PDF - Nội dung bài viết Đồng dư thức trong giải toán số học Đồng dư thức trong giải toán số học Ứng dụng đồng dư thức trong giải toán số học là một công cụ mạnh mẽ giúp học sinh hiểu và giải quyết các bài toán liên quan đến số học một cách hiệu quả. Tài liệu này gồm 32 trang, được trích đoạn từ cuốn sách chuyên ngành với nhiều ví dụ và bài tập cụ thể, giúp học sinh nắm vững kiến thức và áp dụng vào thực tế. Việc áp dụng đồng dư thức vào giải toán số học không chỉ giúp gia tăng kiến thức mà còn rèn luyện kỹ năng suy luận và logic của học sinh, giúp họ trở thành những học sinh giỏi và tự tin khi giải các bài toán phức tạp.
Các bài toán về số chính phương
Nội dung Các bài toán về số chính phương Bản PDF - Nội dung bài viết Các bài toán về số chính phương Các bài toán về số chính phương Cuốn tài liệu với tổng cộng 69 trang này tập trung vào các bài toán liên quan đến số chính phương. Sách được biên soạn dành cho những người đam mê toán học và muốn khám phá sâu hơn về loại số này. Nội dung của cuốn sách có thể giúp độc giả hiểu rõ hơn về tính chất và ứng dụng của số chính phương trong cuộc sống hàng ngày. Việc nắm vững kiến thức về số chính phương sẽ giúp bạn giải quyết các bài toán phức tạp liên quan đến lĩnh vực này một cách hiệu quả.
Các bài toán về số nguyên tố và hợp số
Nội dung Các bài toán về số nguyên tố và hợp số Bản PDF - Nội dung bài viết Các bài toán về số nguyên tố và hợp số Các bài toán về số nguyên tố và hợp số Tài liệu này được trích đoạn từ cuốn sách có tổng cộng 44 trang, nó giải thích về các bài toán liên quan đến số nguyên tố và số hợp. Phân tích cụ thể về tính chất của các số nguyên tố, các phương pháp kiểm tra số nguyên tố, cách phân tích phân tích mối quan hệ giữa số nguyên tố và số hợp. Nó cung cấp ví dụ và bài tập để người đọc hiểu và áp dụng kiến thức vào thực tế. Đồng thời, tài liệu này cũng giúp người đọc nắm vững kiến thức căn bản về các số nguyên tố và hợp số.