Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 12 năm học 2018 - 2019 sở GDĐT Đà Nẵng

Thứ Ba ngày 23 tháng 04 năm 2019, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi học kỳ 2 môn Toán 12 năm học 2018 – 2019, kỳ thi nhằm đánh giá toàn diện các kiến thức Toán 12 thuộc chương trình HK2 mà học sinh đã được học, đồng thời cũng đánh dấu kết thúc chương trình Toán 12. Đề thi học kỳ 2 Toán 12 năm học 2018 – 2019 sở GD&ĐT Đà Nẵng có mã đề 168, đề gồm 04 trang với 50 câu trắc nghiệm, các bài toán thuộc các chủ đề: nguyên hàm – tích phân và ứng dụng, số phức, hình học giải tích Oxyz và một số bài toán liên quan. [ads] Trích dẫn đề thi học kỳ 2 Toán 12 năm học 2018 – 2019 sở GD&ĐT Đà Nẵng : + Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = xlnx, trục hoành và đường thẳng x = e. Thể tích khối tròn xoay được tạo thành khi quay D quanh trục hoành được viết dưới dạng pi/a(be^3 – 2), với a và b là các số nguyên. Tính giá trị biểu thức T = a – b^2. + Trong không gian Oxyz, cho bốn điểm A(0;1;-1), B(1;1;2), C(1;-1;0) và D(0;0;1). Mặt phẳng (a) song song với mặt phẳng (BCD) và chia khối tứ diện ABCD thành hai khối đa diện sao cho tỉ số thể tích của khối đa diện có chứa điểm A và khối tứ diện ABCD bằng 2. Viết phương trình mặt phẳng (a). + Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;2;1) và cắt mặt phẳng (P): 2x – y + 2z + 1 = 0 theo một đường tròn có đường kính bằng 8. Phương trình mặt cầu (S) là?

Nguồn: toanmath.com

Đọc Sách

Đề cuối kỳ 2 Toán 12 năm 2021 - 2022 trường THPT Bảo Thắng 3 - Lào Cai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra cuối học kỳ 2 môn Toán 12 năm học 2021 – 2022 trường THPT Bảo Thắng số 3, tỉnh Lào Cai; đề gồm 40 câu trắc nghiệm (08 điểm) và 04 câu tự luận (02 điểm), thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn đề cuối kỳ 2 Toán 12 năm 2021 – 2022 trường THPT Bảo Thắng 3 – Lào Cai : + Cho hàm số f x liên tục và không âm trên đoạn [3;6]. Diện tích hình phẳng giới hạn bởi các đường y fx y x 0 3 và x 6 được tính theo công thức nào dưới đây? + Trong không gian Oxyz cho hai điểm A B 2 0 0 1 3 3 và đường thẳng 2 11 1 ∆ xyz. Gọi M abc là điểm thuộc đường thẳng ∆ sao cho chu vi tam giác MAB nhỏ nhất. Khi đó abc bằng? + Tìm tất cả giá trị thực của tham số m sao cho có đúng 3 số số phức z thỏa mãn z im 1 và 2 4 z z là số thực.
Đề kiểm tra học kì 2 Toán 12 năm 2021 - 2022 sở GDĐT Vĩnh Long
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra cuối học kì 2 môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Vĩnh Long.
Đề kiểm tra cuối kì 2 Toán 12 năm 2021 - 2022 sở GDĐT Đà Nẵng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng cuối học kì 2 môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Đà Nẵng; đề thi mã đề 168 gồm 03 trang với 35 câu trắc nghiệm (07 điểm) và 04 câu tự luận (03 điểm), thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề).
Đề kiểm tra học kỳ 2 Toán 12 năm 2021 - 2022 sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra cuối học kỳ 2 môn Toán 12 (THPT & GDTX) năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hậu Giang; đề thi được biên soạn theo hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án mã đề 701 – 702 – 703 – 704. Trích dẫn đề kiểm tra học kỳ 2 Toán 12 năm 2021 – 2022 sở GD&ĐT Hậu Giang : + Trong mặt phẳng Oxy, cho điểm M (3;2) biểu diễn số phức z. Mệnh đề nào sau đây đúng? A. Số phức z có phần thực là 3, phần ảo là 2. B. Số phức z có phần thực là 3, phần ảo là −2. C. Số phức z có phần thực là 2, phần ảo là 3. D. Số phức z có phần thực là 3, phần ảo là 2. + Trong không gian với hệ tọa độ Oxyz, cho hai điểm M (-2;-2;1), A(1;2;-3) và đường thẳng 1 5 221 xy z d .Tìm một vectơ chỉ phương u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng nhỏ nhất? + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng 3 3 2 15 0 Pxyz và ba điểm A(1;2;0), B(1;-1;3), C(1;-1;-1). Điểm 0 00 Mx y z thuộc P sao cho 22 2 2MA MB MC nhỏ nhất. Tính giá trị biểu thức 0 00 T x yz 23.