Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển lớp 7 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội

Nội dung Đề chọn đội tuyển lớp 7 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội Bản PDF - Nội dung bài viết Đề thi chọn đội tuyển Toán lớp 7 năm 2022 - 2023 Archimedes School Hà Nội Đề thi chọn đội tuyển Toán lớp 7 năm 2022 - 2023 Archimedes School Hà Nội Xin chào quý thầy cô và các em học sinh lớp 7! Đây là đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 7 năm học 2022 - 2023 của hệ thống giáo dục Archimedes School, thành phố Hà Nội. Đề thi bao gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 135 phút. Một trong những bài toán trong đề thi là: Có 64 học sinh đứng trên một lưới ô vuông kích thước 8 x 8, mỗi ô vuông có đúng một học sinh đứng trên đó và toàn bộ 64 học sinh đều có chiều cao khác nhau. Biết rằng An là người cao nhất trong những người thấp nhất ở mỗi hàng và Bình là người thấp nhất trong những người cao nhất ở mỗi cột, hãy so sánh chiều cao của An và Bình. Bên cạnh đó, đề thi còn đề cập đến bài toán khác như tính giá trị của biểu thức S với số nguyên dương n, và thách thức của Thầy Cẩn khi muốn viết các số vào các đỉnh của một khối lập phương sao cho tổng hai số trên hai đầu mút của mỗi cạnh là đôi một khác nhau. Đây là cơ hội để các em học sinh lớp 7 thể hiện khả năng giải toán, logic và sự sáng tạo của mình. Chúc các em thành công trong việc giải quyết các bài toán thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho tam giác ABC có góc A tù. Kẽ AD AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM DE. + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Không dùng máy tính, hãy tính giá trị của biểu thức S.
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 - 2019 quận Đống Đa - Hà Nội
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 – 2019 cụm trường THCS quận Đống Đa – Hà Nội gồm 01 trang với 4 câu tự luận, đề nhằm giao lưu và tuyển chọn các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội để tuyên dương, khen thưởng, thúc đẩy nâng cao chất lượng môn Toán 7.
Đề thi Olympic Toán 7 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. a) Chứng minh rằng: MC = BN và BN CM. b) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN. + Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Tính số đo AMB? + Cho biết (x – 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.