Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 10 năm 2023 - 2024 trường THPT Bình Chiểu - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 năm học 2023 – 2024 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 1 Toán 10 năm 2023 – 2024 trường THPT Bình Chiểu – TP HCM : + Một người đứng ở lầu của một tòa nhà nhìn hướng từ ngọn cây xuống gốc cây một góc và nếu người đó đứng ở gốc cây nhìn lên một góc so với mặt đất thì mới nhìn thấy lầu của tòa nhà (như hình bên) biết độ cao từ mặt đất lên lầu của tòa nhà là. Tính chiều cao của cây. + Cho hình vuông có độ dài cạnh cm. Tính. + Cho hình bình hành. Lấy điểm trên và điểm trên sao cho và. Chứng minh thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT chuyên Trần Phú - Hải Phòng
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT chuyên Trần Phú – Hải Phòng gồm 4 trang với 40 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho phương trình (m^2 – 1)x + m + 1 = 0. Khẳng định nào dưới đây là sai? A. Khi m ≠ ±1, phương trình có nghiệm duy nhất B. Khi m = 1, phương trình có tập nghiệm S = ∅ C. Khi m = -1, phương trình có tập nghiệm S = R D. Khi m = ±1, phương trình vô nghiệm [ads] + Chuẩn bị được nghỉ hè, một lớp có 45 học sinh cùng bàn nhau để cả lớp cùng đi tham quan du lịch. Do sự lựa chọn của các bạn không được tập trung và thống nhất vào một địa điểm nào, Lớp Trưởng đã lấy biểu quyết bằng cách giơ tay. Kết quả, hai lần số bạn chọn đi Tam Đảo thì ít hơn ba lần số bạn chọn đi Hạ Long là 3 bạn và có 9 bạn chọn đi địa điểm khác. Với nguyên tắc số ít hơn phải theo số đông hơn thì họ sẽ tham quan du lịch đến địa điểm là: A. Địa điểm khác B. Tạm hoãn để bàn lại C. Tam Đảo D. Hạ Long + Cho tam giác ABC, tập hợp điểm M thỏa mãn |vtMA + vtBC| = 1/2.|vtMA – vtMB| là: A. Đường trung trực đoạn BC B. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABIC C. Đường thẳng song song với BC D. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABCI
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT Trần Phú - Hà Nội
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT Trần Phú – Hà Nội mã đề 006 gồm 25 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết  (Lời giải được trình bày bởi thầy Nguyễn Văn Quý). Trích dẫn đề thi : + Cho hệ phương trình: 2x – y + 1 = 0 x^2 – 3xy + y^2 = 2x – 5 + m^2 a. Giải hệ phương trình với m = 0 b. Tìm m để hệ phương trình đã cho có nghiệm [ads] + Cho hàm số y = |x – 3|. Chọn khẳng định đúng trong các khẳng định sau về hàm số: A. Hàm số chẵn B. Hàm số đồng biến trên R C. Giá trị nhỏ nhất của hàm số là y = 0 D. Hàm số nghịch biến trên R + Tìm m để hàm số y = (m – 2)x + 1 là hàm số bậc nhất? Đáp án đúng là: A. m ≠ 0; m ≠ 2   B. m ≠ 2 C. ∀m ∈ R   D. m ≠ 0
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT Lương Thế Vinh - Hà Nội
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT Lương Thế Vinh – Hà Nội gồm 20 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài mỗi phần là 45 phút. Trích dẫn đề thi : + Cho phương trình (x – 2)(2x^2 – 2x + 3m – 1) = 0 (1) với m là tham số thực. a) Tìm m để phương trình (1) nhận x = 3 là một nghiệm. b) Tìm m để phương trình (1) có ba nghiệm phân biệt, trong đó có đúng một nghiệm âm. + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(2;2), B(5;3) và C(4;-4). Chứng minh rằng tam giác ABC vuông và tìm tọa độ điểm D sao cho bốn điểm A, B, C, D lập thành một hình chữ nhật. + Cho tam giác ABC có AC = 7 cm, BC = 10 cm và góc BAC = 60 độ. Tính sin ABC và tính độ dài cạnh AB (yêu cầu tính ra kết quả chính xác, không tính xấp xỉ).
Đề thi học kỳ 1 Toán 10 năm học 2017 - 2018 trường THPT chuyên Đại học Sư Phạm Hà Nội
Đề thi học kỳ 1 Toán 10 năm học 2017 – 2018 trường THPT chuyên Đại học Sư Phạm Hà Nội gồm 12 câu hỏi trắc nghiệm và 4 câu tự luận, thời gian làm bài 90 phút. Nổi tiếng với chất lượng dạy – học và bề dày thành tích đã được khẳng định qua các giải thưởng tại các kỳ thi Olympic, các đề kiểm tra, đề thi của ngôi trường THPT chuyên ĐHSP Hà Nội luôn được thầy, cô và học sinh đón đọc, tham khảo và thử sức.