Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS An Trung Nghệ An

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS An Trung Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm học 2022-2023 trường THCS An Trung, Nghệ An Đề học sinh giỏi Toán lớp 8 năm học 2022-2023 trường THCS An Trung, Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 8 năm học 2022-2023 tại trường THCS An Trung, Nghệ An. Đề thi bao gồm đáp án và thang điểm, giúp các em tự kiểm tra và nâng cao kiến thức Toán của mình. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: Cho hình vuông ABCD, trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. Hãy chứng minh rằng tứ giác MNPQ là hình vuông. Trong tam giác ABC (AB < AC), M là trung điểm của BC. Một đường thẳng qua M và song song với phân giác của góc BAC cắt AC, AB lần lượt tại E, F. Chứng minh rằng CE = BF. Tìm các số nguyên x, y thỏa mãn đẳng thức 2^x * xy – x * y^3 = 1. Tìm x, y là các số tự nhiên lớn hơn 1 sao cho tổng của 1/x và 1/y bằng 4, đồng thời 1/(x^4) + 1/(y^4) = 1. Xác định đa thức f(x) biết rằng f(x) chia hết cho 2x – 1, chia cho x – 2 dư 6, khi chia cho x^2 – 5x + 2 có thương là x + 2 và còn dư. Đề thi học sinh giỏi Toán lớp 8 năm học 2022-2023 trường THCS An Trung, Nghệ An mang đến những thách thức thú vị và giúp các em rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và logic toán học. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu học sinh giỏi Toán 8 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 8 năm 2017 - 2018 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hình thoi ABCD cạnh a có. Hai đường chéo AC và BD cắt nhau tại O, E thuộc tia BC sao cho, AE cắt CD tại F. Trên hai đoạn AB và AD lần lượt lấy hai điểm G và H sao cho CG song song với FH. a) Tính diện tích hình thoi ABCD theo a. b) Chứng minh rằng. c) Tính số đo góc GOH. + Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Tính giá trị của biểu thức: Q = P(-2) + 7P(6). + Cho 3 số nguyên tố x < y < z liên tiếp thỏa mãn là một số nguyên tố. Chứng minh rằng cũng là một số nguyên tố.
Đề Olympic Toán 8 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. 1) Chứng minh AB2 = 4 AC.BD. 2) Kẻ OM vuông góc CD tại M. Chứng minh AC = CM. 3) Từ M kẻ MH vuông góc AB tại H. Chứng minh BC đi qua trung điểm MH. + Cho đa thức f(x) = x3 – 3×2 + 3x – 4. Với giá trị nguyên nào của x thì giá trị của đa thức f(x) chia hết cho giá trị của đa thức x2 + 2. + Cho x, y, z là các số dương thỏa mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức: P.
Đề học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Chứng minh: a) Tứ giác BEDF là hình bình hành. b) CH.CD = CB.CK. c) AB.AH + AD.AK = AC2. + Cho biểu thức M. a) Tìm điều kiện của x để M xác định và rút gọn M. b) Tìm tất các giá trị của x để M > 0. + Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao cho: f(x) – f(x – 1) = x2.