Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2017 2018 trường THCS Lê Quý Đôn Hà Nội lần 2

Nội dung Đề KSCL lớp 9 môn Toán năm 2017 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2017 - 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 Đề KSCL Toán lớp 9 năm 2017 - 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 Đề KSCL Toán lớp 9 năm 2017 - 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 bao gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút. Kỳ thi được tổ chức ngày 17/03/2018 nhằm giúp học sinh ôn tập, rèn luyện chuẩn bị cho kỳ thi vào lớp 10 môn Toán. Bài toán mẫu trong đề KSCL Toán lớp 9: 1. Cho phương trình \(x^2 - (4m-1)x + 3m^2 - 2m = 0\) (x là ẩn) a) Giải phương trình khi m = 1 b) Tìm m sao cho phương trình có hai nghiệm x1, x2 thỏa mãn \(x_1^2 + x_2^2 = 7\) 2. Giải bài toán: "Hai người cùng làm chung một công việc thì sau 3 giờ 36 phút làm xong. Nếu làm một mình thì người thứ nhất hoàn thành công việc sớm hơn người thứ hai là 3 giờ. Hỏi nếu mỗi người làm một mình thì sau bao lâu xong công việc." 3. Trong tam giác vuông \(MAB\) tại \(M\), \(MB < MA\). Kẻ \(MH\) vuông góc với \(AB\). \(O\) là trung điểm của \(AB\), \(E\) và \(F\) lần lượt là giao điểm của đường tròn đường kính \(MH\) với \(MA\) và \(MB\). Chứng minh rằng tứ giác \(MEHF\) là hình chữ nhật và tứ giác \(AEFB\) nội tiếp. 4. Đường thẳng \(EF\) cắt đường tròn ngoại tiếp tam giác \(MAB\) tại \(P\) và \(Q\). Chứng minh tam giác \(MPQ\) cân và ba điểm \(M\), \(I\), \(K\) thẳng hàng. Đề KSCL Toán lớp 9 năm 2017 - 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 đầy đủ, đa dạng về nội dung và phân loại các dạng bài tập khác nhau, giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, logic và khả năng suy luận.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra Toán 9 năm 2023 trường chuyên KHTN - Hà Nội (Vòng 1 - Đợt 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 năm học 2022 – 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự Nhiên, thành phố Hà Nội (Vòng 1 – Đợt 1); kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 02 năm 2023. Trích dẫn Đề kiểm tra Toán 9 năm 2023 trường chuyên KHTN – Hà Nội (Vòng 1 – Đợt 1) : + Với a, b, c > 0 thỏa mãn 2 + a + b + c = abc, tìm giá trị nhỏ nhất của biểu thức M = (a³ + b³ + c³)/(ab + bc + ca). + Cho tam giác ABC nhọn với AB < AC. Phân giác góc BAC cắt BC tại D. Trên trung trực AD lấy điểm K sao cho KD vuông góc BC. 1) Chứng minh rằng KAB = 90° – ACB. 2) Gọi J là hình chiếu vuông góc của D lên KB. Chứng minh rằng tứ giác AJDC nội tiếp. 3) Đường tròn ngoại tiếp tam giác JBC cắt KC tại L khác C. Chứng minh rằng DL vuông góc KC. + Hình chữ nhật ABCD có chiều dài các cạnh AB = DC = 4cm, AD = CB = 5cm. Cho 9 điểm phân biệt đôi một bên trong hình chữ nhật. Chứng minh rằng có tồn tại một tam giác có 3 đỉnh thuộc tập M gồm 4 đỉnh A, B, C, D và 9 điểm trong phân biệt, có diện tích nhỏ hơn hoặc bằng 1 cm2.
Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 16 tháng 02 năm 2023; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán Thực Chiến). Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Hai người thợ, nếu cùng làm chung một công việc thì sau 15 giờ sẽ xong. Nếu người thứ nhất làm một mình trong 3 giờ rồi nghỉ, sau đó người thứ hai làm tiếp trong 5 giờ thì cả hai người làm được 1/4 công việc. Hỏi nếu làm một mình thì mỗi người cần bao lâu sẽ xong công việc đó? + Cho phương trình: x2 + 5x + k − 2 = 0 (k là tham số) (1). a) Giải phương trình (1) khi k = −4. b) Tìm điều kiện của tham số k để phương trình (1) có hai nghiệm phân biệt. + Cho đường tròn (O) có dây AB không là đường kính, gọi D là điểm thuộc tia đối của tia AB. Kẻ đường kính PQ của đường tròn (O) vuông góc với dây AB tại C (P thuộc cung lớn AB). Tia DP cắt đường tròn (O) tại điểm M (M khác P), các đường thẳng AB và QM cắt nhau tại K. a) Chứng minh bốn điểm P, C, K, M cùng thuộc một đường tròn. b) Kẻ tiếp tuyến DE của đường tròn (O) (E là tiếp điểm và E thuộc nửa mặt phẳng bờ AB chứa điểm P). Chứng minh DM.DP = DE2. c) Cho ba điểm A, B, D cố định, gọi F là giao điểm của PK và QD. Chứng minh khi đường tròn (O) thay đổi nhưng vẫn đi qua hai điểm A và B thì DK.DC = DE2 và KP.KF không đổi.
Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 phòng GDĐT Sơn Tây - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng học sinh lớp 9 môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thị xã Sơn Tây, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 16 tháng 02 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 phòng GD&ĐT Sơn Tây – Hà Nội : + Một chiếc máy bay bay lên với vận tốc 400km/h. Đường bay lên tạo với phương nằm ngang một góc 30. Hỏi sau 3 phút kể từ lúc cất cánh, máy bay lên cao được bao nhiêu ki-lô-mét theo phương thẳng đứng? + Mảnh vườn nhà bạn Minh hình chữ nhật có chu vi là 124m. Để trồng thêm cây cảnh, gia đình Minh đã mở rộng chiều dài thêm 5m, chiều rộng thêm 3m, do đó diện tích mảnh vườn tăng thêm 255m2. Tính chiều dài và chiều rộng của mảnh vườn nhà bạn Minh lúc đầu. + Trên mặt phẳng tọa độ Oxy, cho các đường thẳng (d1): y = (m – 2)x + 2m – 5 với m khác 2 và (d2): y = (m + 1)x + 4 với m khác -1. a) Tìm tọa độ giao điểm của (d1) và (d2) khi m = 3. b) Gọi giao điểm của đường thẳng (d1) với Ox có tọa độ (x1;0) và giao điểm của (d2) với Oy có tọa độ (0;yı). Tìm các giá trị của m để |x1| − y1 = 0.
Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Phương Liệt - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Phương Liệt, quận Thanh Xuân, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Phương Liệt – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Ngày thứ nhất, hai tổ công nhân của một nhà máy sản xuất được 1500 chiếc khẩu trang. Để đáp ứng nhu cầu khẩu trang trong dịch cúm nên ngày thứ hai tổ I sản xuất vượt mức 35%, tổ II vượt mức 40% so với ngày thứ nhất. Vì vậy trong ngày thứ hai, hai tổ đã sản xuất được 2065 chiếc khẩu trang. Hỏi trong ngày thứ nhất mỗi tổ đã sản xuất được bao nhiêu chiếc khẩu trang? + Bài toán thực tế: Một đồng hồ có dạng hình tròn, từ lúc đồng hồ chỉ 1 giờ đến lúc đồng hồ chỉ 3 giờ thì kim giờ quay được một góc ở tâm là bao nhiêu độ? + Cho hàm số y = (m − 1)x + m − 3 (m khác 1) có đồ thị là đường thẳng (d). a) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1. b) Gọi A và B lần lượt là giao điểm của (d) với Ox, Oy. Tìm m để tam giác OAB là tam giác vuông cân.