Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Can Lộc Hà Tĩnh

Nội dung Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Can Lộc Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021 - 2022 phòng GD&ĐT Can Lộc - Hà Tĩnh Đề thi thử Toán vào năm 2021 - 2022 phòng GD&ĐT Can Lộc - Hà Tĩnh Đề thi thử Toán vào lớp 10 năm 2021 - 2022 của phòng GD&ĐT Can Lộc - Hà Tĩnh bao gồm 5 bài toán tự luận trên 1 trang. Thời gian làm bài là 90 phút, kỳ thi diễn ra vào ngày 19 tháng 04 năm 2021. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số bài toán từ đề thi thử: Một phòng họp có 250 chỗ ngồi được chia thành từng dãy, mỗi dãy có số chỗ ngồi như nhau. Ban tổ chức phải kê thêm 3 dãy mỗi dãy kê thêm 1 chỗ để đủ chỗ cho 308 người. Hỏi lúc đầu phòng họp có bao nhiêu dãy ghế và mỗi dãy có bao nhiêu chỗ ngồi. Trong hệ tọa độ Oxy, có parabol (P) có phương trình y = x^2 và đường thẳng (d) có phương trình y = mx + 2 (với m là tham số). Tìm m sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ thỏa mãn điều kiện (x1 + 2)(x2 + 2) = 0. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Vẽ hai tiếp tuyến AB, AC với đường tròn (O). Gọi E là trung điểm của AC, F là giao điểm thứ hai của EB với đường tròn và K là giao điểm thứ hai của AF với đường tròn. Chứng minh rằng: a) Tứ giác ABOC là tứ giác nội tiếp đường tròn. b) Tam giác ABF đồng dạng với tam giác AKB và BF.CK = CF.BK. c) AE là tiếp tuyến của đường tròn ngoại tiếp tam giác ABF. Đây là những bài toán thử thách giúp học sinh ôn tập và rèn luyện kỹ năng giải toán trước kỳ thi chính thức. Chúc các em ôn thi hiệu quả!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào 10 chuyên môn Toán (chuyên) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2024 lần 2 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội. Trích dẫn Đề thi thử vào 10 chuyên môn Toán (chuyên) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có AD là đường phân giác trong (D thuộc BC). E là một điểm di động trên cạnh AB (E khác A). Đường tròn ngoại tiếp tam giác ADE cắt AC tại điểm thứ hai F (khác A), cắt đường thẳng BC tại điểm thứ hai K (khác D). Chứng minh rằng: a) BE.KC = CF.KB. b) BE + CF không đổi khi E thay đổi trên cạnh AB (khác A) của tam giác ABC. + Thầy giáo ghi lên bảng các số 1!, 2!, 3!, …, 23!. Thầy giáo cho phép bạn Dương xóa đi một hoặc nhiều các số đang có trên bảng. Hỏi bạn Dương phải xóa đi ít nhất bao nhiêu số sao cho tích các số còn lại trên bảng là một số chính phương? Tại sao? (Ở đây, n! là tích của n số nguyên dương đầu tiên).
Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chung) năm 2024 lần 2 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội.
Đề thi thử Toán vào lớp 10 lần 3 năm 2024 - 2025 trường THCS Thắng Nhì - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2024 – 2025 trường THCS Thắng Nhì, thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 3 năm 2024 – 2025 trường THCS Thắng Nhì – BR VT : + Theo kế hoạch công an tỉnh Bà Rịa – Vũng Tàu điều hai tổ công tác đến làm thẻ Căn cước công dân cho phường Thắng Nhì trên địa bàn thành phố Vũng Tàu. Nếu cả hai tổ cùng làm thì trong 4 ngày hoàn thành công việc. Nếu mỗi tổ làm riêng thì thời gian tổ 1 hoàn thành công việc ít hơn thời gian tổ 2 hoàn thành công việc là 6 ngày. Hỏi nếu làm riêng thì mỗi tổ phải làm trong bao nhiêu ngày để hoàn thành công việc? + Cho đường tròn tâm O. Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MC, MD (C; D là các tiếp điểm). Vẽ cát tuyến MAB với đường tròn (A, B thuộc đường tròn và dây AB không đi qua O; A nằm giữa M và B; C thuộc cung nhỏ AB). Gọi I là trung điểm của AB và H là giao điểm của OM và CD. a) Chứng minh tứ giác MIOD nội tiếp được đường tròn. b) Tia DI cắt đường tròn (O) tại G. Chứng minh CGD MID. c) Gọi E là giao điểm của hai đường thẳng CD và OI, S là giao điểm của MI và EH, K là giao điểm của hai đường thẳng OS và ME. Chứng minh MH.MO + EI.EO = ME2. d) Kẻ dây BN song song với CD. Chứng minh ba điểm: A, H, N thẳng hàng.
Đề thi thử Toán vào 10 lần 1 năm 2024 - 2025 trường Lương Ngọc Quyến - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2024 – 2025 trường Lương Ngọc Quyến – Thái Nguyên : + Một người nông dân trồng hoa trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 15m. Cuối vụ thu hoạch, bình quân người đó bán được 20.000 đồng tiền hoa trên mỗi mét vuông đất. Tính chiều dài và chiều rộng mảnh vườn đó. Biết tổng số tiền bán hoa cuối vụ từ mảnh vườn, người đó thu được là 252 triệu đồng. + Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm. Kẻ đường cao AH. Tính độ dài các đoạn thẳng AH, BH, CH. + Cho đường tròn O1 và O2 tiếp xúc ngoài tại A và một đường thẳng d tiếp xúc với O O 1 2 lần lượt tại B C. a) Tính tổng số đo của hai góc BO O 1 2 và 2 1 CO O. b) Chứng minh rằng tam giác ABC vuông tại A.