Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 năm 2022 - 2023 trường chuyên Lương Thế Vinh - Đồng Nai

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2022 – 2023 trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai. Trích dẫn đề HSG Toán 10 năm 2022 – 2023 trường chuyên Lương Thế Vinh – Đồng Nai : + Cho tam giác ABC không cân nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I), (I) tiếp xúc BC, CA, AB lần lượt tại D, E, F. Giả sử DE; AB cắt nhau tại X và DF; AC cắt nhau tại Y và S trên BC sao cho IA; IS vuông góc nhau. Lấy M, N lần lượt là trung điểm của XF, YE. a) Chứng minh OI và MN vuông góc nhau. b) Chứng minh ba đường thẳng MN, EF và AS đồng quy. c) Lấy điểm K thoả KN // IC; KM // IB. Chứng minh đường thẳng qua K song song OI chia đôi EF. + Với mỗi số nguyên dương n, đặt an = 2^(n3 + 1) – 3^(n2 + 1) + 5^(n + 1). a) Tìm tất cả các số nguyên tố p sao cho có vô hạn giá trị nguyên dương n mà an không chia hết cho p. b) Chứng minh rằng: tồn tại vô hạn số nguyên tố p sao cho có giá trị nguyên dương n mà an chia hết cho p. + Cho 2n số thực đôi một khác nhau a1, a2, …, an; b1, b2, …, bn. Viết các số vào bảng n × n như sau: Ở ô (i;j) (hàng i và cột j) là số (ai + bj). Đặt pij = (bj + a1)(bj + a2)…(bj + an) là tích các số trên cột thứ i. Xét đa thức P(x) = (x + a1)(x + a2)…(x + an) và giả sử pi1 = pi2 = … = pin = C. a) Chứng minh rằng đa thức P(x) – C là tích của n đa thức bậc nhất có hệ số ứng với x là 1. b) Chứng minh tích tất cả các số trên mỗi hàng cũng bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi Olympic 243 Toán 10 năm 2021 sở GDĐT Quảng Nam
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.
Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.