Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ năng giải bài toán khoảng cách trong hình học không gian - Trần Thanh Hữu

Tài liệu gồm 51 trang là Sáng Kiến Kinh Nghiệm của thầy Trần Thanh Hữu (GV trường THPT Nguyễn Thái Học – Gia Lai) nhằm chia sẻ một số giải pháp giúp học sinh 12 phát huy khả năng giải bài toán khoảng cách trong hình học không gian ở kỳ thi THPT Quốc gia môn Toán. Tài liệu đề cập đến 3 giải pháp để giải quyết bài toán khoảng cách trong hình học không gian: Giải pháp 1 : Vận dụng định nghĩa khoảng cách từ một điểm đến một đường thẳng và mặt phẳng để giải quyết các bài toán khoảng cách. Trong giải pháp này giáo viên cần ôn lại kiến thức về hình học không gian, hệ thức lượng trong tam giác đặc biệt là hệ thức lượng trong tam giác vuông, định lý Talet trong tam và hướng dẫn cho học sinh sử dụng linh hoạt chúng, giáo viên cần xây dựng các ví dụ đa dạng từ dạng đơn giản đến ví dụ đòi hỏi dạng tư duy, suy luận, có ví dụ ở dạng tự luận, có ví dụ ở dạng trắc nghiệm để học sinh thấy được khoảng cách từ một điểm đến đường thẳng và mặt phẳng là một kiến thức qua trọng, là nền tảng để đi giải quyết các bài toán tính khoảng cách trong hình học không gian. Giải pháp 2 : Vận dụng thể tích, tỷ số thể tích của tứ diện để giải quyết bài toán khoảng cách trong hình học không gian. Trong giải pháp 1 để tính khoảng cách trong hình học không gian đòi hỏi học sinh phải biết cách dựng hình chiếu của một điểm lên một đường thẳng và mặt phẳng. Tuy nhiên, đối với học sinh yếu việc dựng hình chiếu đối với mình hơi quá sức. Để khắc phục điều đó, trong giải pháp này, giáo viên cần hướng dẫn cho học sinh biết sử dụng linh hoạt công thức tính thể tích của một tứ diện, công thức tỷ số thể tích để tính khoảng cách từ một điểm đến một mặt phẳng dễ dàng hơn, không cần phải dựng hình chiếu; học sinh sẽ có động lực nghiên cứu, đam mê và yêu thích nội dung này. [ads] Giải pháp 3 : Vận dụng phương pháp tọa độ hóa để giải quyết bài toán khoảng cách trong hình học không gian. Trong giải pháp 1,2 để tính khoảng cách trong hình học không gian đồi hỏi học sinh phải biết cách dựng hình chiếu của một điểm lên một đường thẳng và mặt phẳng, biết cách xác định chiều cao của hình chóp, biết cách vận dụng kiến thức hệ thức lượng trong tam giác một cách linh hoạt. Tuy nhiên đối với học sinh trung bình – yếu thì đôi khi còn quá khó vì kiến thức đó các em không còn nhớ. Để khắc phục điều đó, trong giải pháp này, giáo viên cần hướng dẫn cho học sinh biết cách xây dựng hệ trục tọa độ, chuyển bài toán hình học không gian thuần túy về giả thuyết là một bài toán trong tọa độ Oxyz, sử dụng linh hoạt kiến thức tọa độ mà các em học sinh 12 vừa được học để giải quyết bài toán khoảng cách là một cách làm hợp lý, học sinh sẽ thấy được việc học của mình có ứng dụng, giải quyết được một số bài toán mà trước đây mình thấy rất khó, không thể giải quyết được thì nay lại làm được một cách đơn giản và đặc biệt là giải trong bài toán trắc nghiệm thì quá hiệu quả. Từ đó, tạo động lực cho các em học tập, nghiên cứu, tìm tòi ra những ứng dụng mới cho kiến thức của mình được học và từ đó có niềm yêu toán học.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khoảng cách và thể tích khối đa diện - Hoàng Văn Phiên
Tài liệu gồm 17 trang hệ thống kiến thức từ lớp 8 đến 12 và bài tập các dạng toán trong chuyên đề khoảng cách và thể tích khối đa diện. A – ÔN TẬP KIẾN THỨC 1. Một số hệ thức lượng trong tam giác vuông 2. Một số hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích 4. Quan hệ song song 5. Quan hệ vuông góc 6. Khoảng cách và góc 7. Thể tích khối đa diện [ads] B – CÁC DẠNG BÀI TẬP 1. Hình vẽ trong không gian 2. Khoảng cách trong không gian + Bài toán 1. Khoảng cách từ 1 điểm đến 1 mặt phẳng + Bài toán 2. Khoảng cách giữa hai đường thẳng chéo nhau 3. Bài toán thể tích khối đa diện + Bài toán 1. Đường cao khối đa diện + Bài toán 2. Tỉ số thể tích + Bài toán 3. Phân chia khối đa diện
Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Một số công thức giải nhanh phần thể tích khối chóp - Nguyễn Chiến
Tài liệu gồm 12 trang tuyển tập các công thức tính nhanh thể tích của các khối chóp thường gặp và bài tập ví dụ minh họa có giải chi tiết. Tài liệu trình bày công thức tính thể tích các dạng hình chóp sau: + Hình chóp SABC với các mặt phẳng (SAB), (SBC), (SAC) vuông góc với nhau từng đôi một, diện tích các tam giác SAB, SBC, SAC lần lượt là S1, S2, S3 + Hình chóp S.ABC có SA vuông góc với (ABC), hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, góc BSC = α, góc ASB = β + Hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh bằng a, cạnh bên bằng b + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên tạo với mặt phẳng đáy góc + Hình chóp tam giác đều S.ABC có các cạnh bên bằng b và cạnh bên tạo với mặt phẳng đáy góc β + Hình chóp tam giác đều S.ABC có các cạnh đáy bằng a, cạnh bên tạo với mặt phẳng đáy góc β [ads] + Hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, và SA = SB = SC = SD = b + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt phẳng đáy là α + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, (SAB) = α, với α ∈ (π/4; π/2) + Hình chóp tứ giác đều S.ABCD có các cạnh bên bằng a, góc tạo bởi mặt bên và mặt đáy là α với α ∈ (0; π/2) + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Gọi (P) là mặt phẳng đi qua A song song với BC và vuông góc với (SBC), góc giữa (P) với mặt phẳng đáy là α + Khối tám mặt đều có đỉnh là tâm các mặt của hình lập phương cạnh a + Khối tám mặt đều cạnh a. Nối tâm của các mặt bên ta được khối lập phương Bài tập minh họa áp dụng công thức Một số công thức giải nhanh phần tỉ lệ thể tích
Bài toán cực trị hình học không gian và các khối lồng nhau - Trần Đình Cư
Tài liệu gồm 31 trang hướng dẫn phương pháp giải dạng toán cực trị hình học không gian và các khối lồng nhau kèm theo bài tập minh họa có lời giải chi tiết. Trong quá trình tìm kiếm lời giải nhiều bài toán hình học, sẽ rất có lợi nếu chúng ta xem xét các phần tử biên, phần tử giới hạn nào đó, tức là phần tử mà tại đó mỗi đại lượng hình học có thể nhận giá trị lớn nhất hoặc giá trị nhỏ nhất, chẳng hạn như cạnh lớn nhất, cạnh nhỏ nhất của một tam giác; góc lớn nhất hoặc góc nhỏ nhất của một đa giác … Những tính chất của các phần tử biên, phần tử giới hạn nhiều khi giúp chúng ta tìm được lời giải thu gọn của bài toán. Phương pháp tiếp cận như vậy tới lời giải bài toán được gọi là nguyên tắc cực hạn. Như vậy bài toán cực trị hình học là cần thiết trong không gian, nó thường xuất hiện ở những câu hỏi khó trong phần thi trắc nghiệm THPT Quốc gia. [ads] Tóm tắt nội dung tài liệu : 1. Phương pháp Cơ sở của phương pháp cần kết hợp giữa các quan điểm tìm cực trị như sau 1. Sử dụng bất đẳng thức thông dụng 2. Bất đẳng thức cauchy cho các biến đại lượng không âm. 3. Bất đẳng thức schwartz cho các biến đại lượng tùy ý. 4. Sử dụng tính bị chặn của hàm lượng giác 5. Sử dụng đạo hàm để lập bảng biến thiên 6. Sử dụng các nguyên lý hình học cực hạn Một số ví dụ mẫu Câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết