Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Xin chào quý thầy cô và các bạn học sinh! Đây là đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 của trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào ngày 04/06/2023. Dưới đây là một số câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2023 – 2024 của trường chuyên Quốc học Huế: 1. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AD và trực tâm H. Gọi E là điểm trên (O) sao cho hai dây AE và BC song song với nhau. Đường thẳng EH cắt (O) tại điểm thứ hai là F và cắt đường trung trực của BC tại M. a) Chứng minh M là trung điểm của EH và AMOF là tứ giác nội tiếp. b) Chứng minh OFA + ODF = 180. c) Gọi K là điểm đối xứng với A qua O. Tiếp tuyến của (O) tại A cắt đường thẳng FK tại T. Chứng minh hai đường thẳng TH và BC song song với nhau. 2. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 và parabol (P): y = x^2. Chứng minh với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B nằm khác phía đối với trục tung. Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tìm tất cả các giá trị của m để hai tam giác AOC và BOD có diện tích bằng nhau. 3. Trong một đường tròn (O) có bán kính bằng 46 cm, cho 2023 điểm bất kỳ. Chứng minh tồn tại vô số hình tròn có bán kính bằng 1 cm nằm trong đường tròn (O) và không chứa bất kỳ điểm nào trong 2023 điểm đã cho. Chúc các em học sinh thực hiện kỳ thi tốt và đạt kết quả cao trong cuộc thi. Hãy cố gắng học tập và rèn luyện để trở thành những tài năng trong lĩnh vực Toán học!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên và PTDTNT tỉnh môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào 06-08/06/2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Xác định hàm số y = ax + b biết đồ thị của nó đi qua điểm A(0;-3) và cắt đường thẳng (d): y = 2x − 1 tại điểm B có hoành độ bằng 4. + Cho phương trình x2 − 4x + 2m + 1 = 0 (m là tham số). Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn x12 + (x1 + x2)x2 = 4m2 + 3. + Cho nửa đường tròn tâm O có đường kính AB và điểm M tùy ý trên nửa đường tròn (M khác A và B). Trên đoạn thẳng MB lấy điểm H (H khác M và B). Đường thẳng đi qua H, vuông góc với AB tại K cắt nửa đường tròn đã cho tại E và cắt đường thẳng AM tại I. a) Chứng minh tứ giác AMHK nội tiếp đường tròn. b) Chứng minh KE2 = KA.KB = KI.KH. c) Gọi N là giao điểm thứ hai của đường thẳng AH và nửa đường tròn đã cho. Chứng minh ba điểm B, N, I thẳng hàng và tiếp tuyến của nửa đường tròn đã cho tại N đi qua trung điểm của đoạn thẳng IH.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Kon Tum
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào ngày 04 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kon Tum : + Trên mặt phẳng tọa độ Oxy, cho đường thẳng d: y = (m2 + 2)x + 3 (m là tham số). Gọi A, B lần lượt là giao điểm của d với Ox, Oy. Tìm m để diện tích tam giác OAB bằng 2. + Cho phương trình: x2 – (m + 5)x + 3m + 4 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5. + Cho tam giác ABC có góc C tù. Giả sử các đường phân giác trong và phân giác ngoài của góc A của tam giác ABC lần lượt cắt đường thẳng BC tại D, E sao cho AD = AE. Chứng minh rằng AB2 + AC2 = 4R2 với R là bán kính đường tròn ngoại tiếp tam giác ABC.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 trường THPT chuyên Hà Tĩnh, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào sáng thứ Tư ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 trường THPT chuyên Hà Tĩnh : + Cho đường tròn (O) đường kính AB cố định, C là một điểm chạy trên đường tròn (O) không trùng với A và B. Các tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại điểm M. Đường thẳng MB cắt AC tại F và cắt đường tròn (O) tại E (E khác B). a) Gọi H là trung điểm của đoạn thẳng AC. Chứng minh tam giác OEM đồng dạng với tam giác BHM. b) Gọi K là hình chiếu vuông góc của C trên đường thẳng AB. Hai đường thẳng MB và CK cắt nhau tại I. Tỉnh tỷ số FI/AB khi tổng diện tích hai tam giác IAC và IBC lớn nhất. c) Chứng minh rằng 1/BM + 1/BF = 2/BE. + Cho các số thực a, b, c thỏa mãn a > b > c; ab + bc + ca > 0 và a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức P = 1/(a – b) + 1/(b – c) + 1/(a – c) + 5/2(ab + bc + ca). + Cho x, y, z là các số chính phương. Chứng minh rằng (x + 1)(y + 1)(z + 1) luôn viết được dưới dạng tổng của hai số chính phương.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Cho đường tròn tâm O, đường kính BC. Trên đường tròn đã cho lấy điểm A cố định (A khác B, C) và lấy điểm D thay đổi trên cung nhỏ AC (D khác A, C). Kẻ AH vuông góc với BC (H thuộc BC). Hai đường thẳng BD và AH cắt nhau tại I. 1. Chứng minh rằng tứ giác IHCD là tứ giác nội tiếp. 2. Chứng minh rằng AB2 = BI.BD. 3. Lấy điểm M trên đoạn thẳng BC sao cho BM = AB. Chứng minh rằng tâm đường tròn ngoại tiếp △MID luôn nằm trên một đường thẳng cố định khi D thay đổi trên cung nhỏ AC. + Một phòng họp có 165 ghế ngồi được xếp thành các hàng, mỗi hàng có số ghế bằng nhau. Trong một buổi họp có 208 người tham dự họp, do đó ban tổ chức đã kê thêm 1 hàng ghế và mỗi hàng ghế phải xếp nhiều hơn quy định là 2 ghế mới đủ chỗ ngồi. Hỏi lúc đầu, phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế? + Cho ba đường thẳng đôi một phân biệt (d1) : y = x + 2; (d2) : y = 2x + 1; (d3) : y = (m2 + 1)x + m (với m là tham số). Giá trị của m để ba đường thẳng trên cùng đi qua một điểm là?