Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp phân tích đa thức thành nhân tử

Tài liệu gồm 74 trang, hướng dẫn các phương pháp phân tích đa thức thành nhân tử, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8. A. MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. Các phương pháp phân tích cơ bản 1. Phương pháp đặt nhân tử chung. + Tìm nhân tử chung là những đơn thức, đa thức có mặt trong tất cả các hạng tử. + Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác. + Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng). 2. Phương pháp dùng hằng đẳng thức. + Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử. + Cần chú ý đến việc vận dụng hằng đẳng thức. 3. Phương pháp nhóm nhiều hạng tử và phối hợp các phương pháp. + Kết hợp các hạng tử thích hợp thành từng nhóm. + Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức. II. Một số phương pháp nâng cao Chúng ta đã biết các phương pháp cơ bản để phân tích một đa thức thành nhân tử là đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử và phối hợp các phương pháp đó. Tuy nhiên có những đa thức mặc dù rất đơn giản, nếu chỉ biết dùng ba phương pháp đó thôi thì không thể phân tích thành nhân tử được. Do đó trong chuyên đề này chúng ta sẽ xét thêm một số phương pháp khác để phân tích đa thức thành nhân tử. 1. Phương pháp tách hạng tử. 1.1. Đối với đa thức bậc hai f(x) = ax2 + bx + c có nghiệm. 1.2. Đối với đa thức hai biến dạng f(x;y) = ax2 + bxy + cy2. 1.3. Đối với đa thức bậc từ 3 trở lên. 1.4. Đối với đa thức nhiều biến. 2. Phương pháp thêm và bớt cùng một hạng tử. Với một số đa thức không thể sử dụng các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử cũng như phép tách hạng tử để phân tích thành nhân tử. Khi đó ta có thể sử dụng phép thêm bớt cùng một hạng tử với mục đích làm xuất hiện nhân tử chung hoặc xuất hiện các hằng đẳng thức. 2.1. Thêm và bớt cùng một số các hạng tử làm xuất hiện các hằng đẳng thức. 2.2. Thêm và bớt cùng một số hạng tử làm xuất hiện nhân tử chung. 3. Phương pháp đổi biến. Với một số đa thức có bậc cao hoặc có cấu tạo phức tạp mà khi thự hiện theo các phương pháp như trên gây ra nhiều khó khăn. Khi đó thông qua phép đổi biết ta đưa được về đa thức có bậc thấp hơn goặc đơn giản hơn để thuận tiện cho việc phân tích thành nhân tử. Sau khi phân tích thành nhân tử đối với đa thức mới ta thay trở lại biến cũ để được đa thức với biến cũ. 4. Phương pháp hệ số bất định. 5. Phương pháp xét giá trị riêng. Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại. B. MỘT SỐ BÀI TẬP TỰ LUYỆN C. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép nhân và phép chia các đa thức
Nội dung Chuyên đề phép nhân và phép chia các đa thức Bản PDF - Nội dung bài viết Chuyên đề phép nhân và phép chia các đa thức Chuyên đề phép nhân và phép chia các đa thức Để giúp học sinh bồi dưỡng năng lực học tập môn Toán lớp 8 chương 1, Sytu giới thiệu tài liệu chuyên đề phép nhân và phép chia các đa thức. Tài liệu này bao gồm các kiến thức cơ bản, hướng dẫn mẫu và bài tập tự luận. Trước hết, chúng ta cần hiểu cách nhân đơn thức với đa thức. Khi nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích lại với nhau. Cách nhân đa thức với đa thức cũng tương tự, ta nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia và cộng các tích lại với nhau. Ngoài ra, tài liệu cũng giới thiệu những hằng đẳng thức đáng nhớ như bình phương của một tổng, bình phương của một hiệu, lập phương của một tổng, lập phương của một hiệu, tổng hai lập phương, hiệu hai lập phương. Các hằng đẳng thức này giúp chúng ta giải quyết các bài toán phức tạp một cách dễ dàng hơn. Phần cuối của tài liệu đề cập đến cách phân tích đa thức thành nhân tử. Các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử giúp chúng ta phân tích đa thức một cách hiệu quả. Ngoài ra, khi cần, ta có thể phối hợp nhiều phương pháp để giải quyết bài toán phân tích đa thức thành nhân tử. Trên hết, tài liệu cũng giới thiệu cách chia đơn thức cho đơn thức và chia đa thức cho đơn thức. Việc này yêu cầu chúng ta tỉ mỉ trong việc chia các hạng tử để đạt được kết quả chính xác. Với tài liệu này, học sinh sẽ có cơ hội học tập và ôn tập kỹ năng phép nhân và phép chia các đa thức một cách hiệu quả, từ đó nâng cao khả năng giải các bài toán liên quan trong chương trình Toán lớp 8.
Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ
Nội dung Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ Bản PDF - Nội dung bài viết Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn ThọPHẦN A: ĐẠI SỐ 8PHẦN B: HÌNH HỌC 8 Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ Tài liệu "Các dạng toán và phương pháp giải lớp 8 môn Toán" được biên soạn bởi thầy Ngô Văn Thọ, gồm 202 trang phân dạng và hướng dẫn phương pháp giải Toán lớp 8 toàn tập, bao gồm cả Đại số và Hình học. Mỗi chuyên đề trong tài liệu đều được phân dạng chi tiết, cung cấp các bước giải toán, ví dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. PHẦN A: ĐẠI SỐ 8 Chương I: Phép nhân và phép chia các đa thức bao gồm các phần như nhân đơn thức với đa thức, hằng đẳng thức, phân tích đa thức thành nhân tử và phương pháp giải đa thức. Các phương pháp giải bao gồm cách đặt nhân tử chung, nhóm nhiều hạng tử, dùng hằng đẳng thức, chia đa thức và nhiều phương pháp khác. Chương II: Phân thức đại số bao gồm tính chất cơ bản của phân thức đại số, phân thức bằng nhau, rút gọn phân thức và các phép toán về phân thức. Phương pháp giải toán với phân thức đại số như tìm điều kiện để phân thức có nghĩa, tìm giá trị của biến để phân thức nhận một giá trị nào đó. Chương III: Phương trình bậc nhất một ẩn bao gồm mở đầu về phương trình, phương trình bậc nhất một ẩn và giải toán bằng cách lập phương trình. Các vấn đề như loại so sánh, loại tìm số gồm hai, ba chữ số và các loại khác. Chương IV: Bất phương trình bậc nhất một ẩn bao gồm bất đẳng thức, bất phương trình bậc nhất một ẩn và phương trình chứa dấu giá trị tuyệt đối. PHẦN B: HÌNH HỌC 8 Chương I: Tứ giác bao gồm tứ giác, hình thang – hình thang vuông, hình thang cân, đường trung bình của tam giác và của hình thang, đối xứng trục, hình bình hành, hình chữ nhật, hình thoi và hình vuông. Chương II: Đa giác Chương III: Tam giác đồng dạng bao gồm định lí Ta-lét trong tam giác, tam giác đồng dạng và cách vận dụng để tính toán, chứng minh và giải các bài toán liên quan. Đây là tài liệu cung cấp kiến thức căn bản và phương pháp giải toán đầy đủ và chi tiết, giúp học sinh lớp 8 hiểu rõ và áp dụng vào thực hành môn Toán một cách hiệu quả.