Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán bằng cách lập phương trình, hệ phương trình Phạm Huy Huân

Nội dung Giải bài toán bằng cách lập phương trình, hệ phương trình Phạm Huy Huân Bản PDF - Nội dung bài viết Giải bài toán bằng phương trình, hệ phương trình - Tài liệu của thầy Phạm Huy Huân Giải bài toán bằng phương trình, hệ phương trình - Tài liệu của thầy Phạm Huy Huân Tài liệu được biên soạn bởi thầy giáo Phạm Huy Huân, gồm tổng cộng 29 trang, hướng dẫn cách giải bài toán bằng cách lập phương trình, hệ phương trình. Đây là tài liệu hữu ích giúp học sinh hiểu rõ và áp dụng kiến thức Toán lớp 9, cũng như ôn tập để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Trên cơ sở hướng dẫn của thầy Phạm Huy Huân, các bước giải bài toán bằng cách lập phương trình được chia thành 3 phần: Bước 1: Lập hệ phương trình Chọn các ẩn số và đặt điều kiện, đơn vị thích hợp cho từng ẩn số. Biểu diễn các đại lượng chưa biết dưới dạng ẩn và các đại lượng đã biết dưới dạng biểu thức. Lập phương trình để thể hiện mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình hoặc hệ phương trình vừa lập được. Bước 3: Kiểm tra lại điều kiện và trả lời câu hỏi đề bài. Ngoài ra, tài liệu của thầy Phạm Huy Huân cũng trình bày một số dạng bài toán điển hình, bao gồm: Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán chuyển động, bao gồm có hoặc không có sự tham gia của dòng nước. Dạng 3: Toán về năng suất và khối lượng công việc. Dạng 4: Toán về phần trăm (%). Dạng 5: Bài toán về công việc làm chung hoặc làm riêng. Dạng 6: Bài toán liên quan đến hình học. Dạng 7: Toán thực tế. Đồng thời, tài liệu cũng cung cấp hướng dẫn cụ thể và chi tiết để giúp học sinh hiểu và áp dụng phương pháp giải bài toán bằng phương trình, hệ phương trình một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề góc ở tâm, số đo cung
Tài liệu gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề góc ở tâm, số đo cung, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. I. TÓM TẮT LÝ THUYẾT 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Định lí. II. BÀI TẬP MINH HỌA Phương pháp giải: Để tính số đo của góc ở tâm, số đo của cung bị chắn, ta sử dụng các kiến thức sau: + Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. + Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ (có chung hai đầu mút với cung lớn). + Số đo của nửa đường tròn bằng 180 độ. + Cung cả đường tròn có số đo 360 độ. + Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. + Sử dụng quan hệ đường kính và dây cung. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề vị trí tương đối của hai đường tròn
Tài liệu gồm 36 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của hai đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 7 và bài số 8. A. KIẾN THỨC TRỌNG TÂM 1. Tính chất của đường nối tâm. Đường nối tâm (đường thẳng đi qua tâm hai đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: + Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. + Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R và r. + Hai đường tròn cắt nhau. + Hai đường tròn tiếp xúc nhau: Tiếp xúc ngoài; Tiếp xúc trong. + Hai đường tròn không giao nhau: Ở ngoài nhau; (O) đựng (O’); (O) và (O’) đồng tâm. B. CÁC DẠNG BÀI MINH HỌA Dạng 1 : Nhận biết vị trí tương đối của hai đường tròn. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn. Dạng 2 : Bài tập về hai đường tròn cắt nhau. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Bài tập về hai đường tròn tiếp xúc. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không cắt nhau. C. TRẮC NGHIỆM RÈN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. A. TÓM TẮT LÝ THUYẾT Dấu hiệu 1. Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng âỳ là một tiếp tuyến của đường tròn. Dấu hiệu 2. Theo định nghĩa tiếp tuyến. B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: + Cách 1. Chứng minh C nằm trên (O) và OC vuông góc với a tại C. + Cách 2. Kẻ OH vuông góc a tại H và chứng minh OH = OC = R. + Cách 3. Vẽ tiếp tuyến a’ của (O) và chứng minh a và a’ trùng nhau. Dạng 2 . Tính độ dài. Phương pháp giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3 . Bài toán tổng hợp. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề vị trí tương đối của đường thẳng và đường tròn
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của đường thẳng và đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ + Vị trí tương đối. + Tính chất của tiếp tuyến. + Tính chất hai tiếp tuyến cắt nhau. + Đường tròn nội tiếp tam giác. + Đường tròn bàng tiếp tam giác. B. CÁC DẠNG BÀI TẬP TỰ LUẬN MINH HỌA Dạng 1: Nhận biết vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài tập vận dụng tính chất tiếp tuyến. Dạng 3: Chứng minh tiếp tuyến của đường tròn. Dạng 4: Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN