Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội

Nội dung Đề học sinh năng khiếu lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội Bản PDF - Nội dung bài viết Đề học sinh năng khiếu Toán lớp 8 năm 2021-2022 phòng GD&ĐT Thanh Trì Hà Nội Đề học sinh năng khiếu Toán lớp 8 năm 2021-2022 phòng GD&ĐT Thanh Trì Hà Nội Xin chào quý thầy cô giáo và các em học sinh lớp 8! Hôm nay Sytu xin giới thiệu đến mọi người đề kiểm tra học sinh năng khiếu môn Toán lớp 8 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội. Kỳ thi đang diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn một số câu hỏi trong đề thi: Cho tam giác ABC có độ dài các cạnh là a, b, c và chu vi là 2p. Hãy chứng minh một điều gì đó? Đoạn thẳng AB và điểm M nằm trên đoạn thẳng đó. Xây hai hình vuông AMCD và BMEF trên cùng một nửa mặt phẳng bờ AB. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. Hãy chứng minh một số khẳng định liên quan đến ABC. Sử dụng các số 1, 2, 3, 4, 5, 6, 7, 8 để đánh số đỉnh của một hình lập phương và tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau. Đề thi này không chỉ giúp các em học sinh thể hiện năng khiếu Toán mà còn giúp họ phát triển logic, suy luận và khả năng giải quyết vấn đề. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho abc là các số hữu tỷ thỏa mãn điều kiện ab bc ca 1. Chứng minh rằng biểu thúc 222 Qa b c là bình phương của một số hữu tỷ. + Cho các số nguyên abc thoả mãn 333 210 ab bc ca. Tính giá trị của biểu thức B ab bc ca. + Cho tam giác ABC, M là một điểm thuộc cạnh BC M kh B M kh C. Qua M kẻ các đường thẳng song song với AC AB, chúng cắt AB AC lần lượt tại D và E. a) Chứng minh tứ giác ADME là hình bình hành. Xác định vị trí của điểm M trên cạnh BC để hình bình hành ADME là hình thoi. b) Chứng minh rằng BD EC DM ME. c) Cho 2 2 9 16 BDM CME S cm S cm. Tính ABC S (ký hiệu S là diện tích tam giác). d) Chứng minh rằng AM BC AC BM AB CM.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Yên Phong - Bắc Ninh
Đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 14 tháng 04 năm 2014. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh : + Cho hình thang ABCD vuông tại A và D. Biết CD = 2AB = 2AD và BC = a2. Gọi E là trung điểm của CD. a. Tứ giác ABED là hình gì? Tại sao? b. Tính diện tích hình thang ABCD theo a. c. Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Tính góc HDI? + Cho biểu thức. a. Rút gọn biểu thức A. b. Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên. c. Tìm x để A. + Phần dành cho thí sinh trường đạị trà: Cho a, b, c là 3 cạnh của tam giác, p là nửa chu vi. Phần dành cho thí sinh trường THCS Yên Phong: Cho a, b, c, d là các số dương. Chứng minh rằng.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.