Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM

Nội dung Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Bản PDF - Nội dung bài viết Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Sytu xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 8, đề thi chọn học sinh giỏi lần thứ 2 môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn từ Đề học sinh giỏi lần 2 Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thủ Đức - TP HCM: Cho tam giác ABC có ba góc nhọn (AB < AC) và ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: Tam giác BFC đồng dạng với tam giác BDA và góc BFD = góc ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Vẽ đường thẳng qua M vuông góc với HM, cắt AB, AD, AC tại P, Q, R. Chứng minh: PQ = QR. Hai địa điểm A và B cách nhau 200 km. Xe ô tô và xe máy khởi hành cùng lúc từ A và B đi ngược chiều. Mỗi xe đi với vận tốc khác nhau và gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau một giờ so với xe máy, hỏi chúng sẽ gặp nhau tại điểm D cách C bao nhiêu km? Biết vận tốc của xe ô tô lớn hơn 20 km/h so với xe máy. Cho tứ giác ABCD có các trung điểm M, N, P, Q lần lượt của các cạnh AB, BC, CD, DA. Điểm I nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết S(AIQM) = 32 (cm2), S(BMIN) = 50 (cm2) và S(DPIQ) = 20 (cm2). Nội dung đề thi trên cung cấp cho các em học sinh những bài toán thú vị và bổ ích, giúp họ rèn luyện kỹ năng giải quyết vấn đề, logic suy luận và tính toán trong môn học Toán. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho abc là các số hữu tỷ thỏa mãn điều kiện ab bc ca 1. Chứng minh rằng biểu thúc 222 Qa b c là bình phương của một số hữu tỷ. + Cho các số nguyên abc thoả mãn 333 210 ab bc ca. Tính giá trị của biểu thức B ab bc ca. + Cho tam giác ABC, M là một điểm thuộc cạnh BC M kh B M kh C. Qua M kẻ các đường thẳng song song với AC AB, chúng cắt AB AC lần lượt tại D và E. a) Chứng minh tứ giác ADME là hình bình hành. Xác định vị trí của điểm M trên cạnh BC để hình bình hành ADME là hình thoi. b) Chứng minh rằng BD EC DM ME. c) Cho 2 2 9 16 BDM CME S cm S cm. Tính ABC S (ký hiệu S là diện tích tam giác). d) Chứng minh rằng AM BC AC BM AB CM.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Yên Phong - Bắc Ninh
Đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 14 tháng 04 năm 2014. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh : + Cho hình thang ABCD vuông tại A và D. Biết CD = 2AB = 2AD và BC = a2. Gọi E là trung điểm của CD. a. Tứ giác ABED là hình gì? Tại sao? b. Tính diện tích hình thang ABCD theo a. c. Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Tính góc HDI? + Cho biểu thức. a. Rút gọn biểu thức A. b. Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên. c. Tìm x để A. + Phần dành cho thí sinh trường đạị trà: Cho a, b, c là 3 cạnh của tam giác, p là nửa chu vi. Phần dành cho thí sinh trường THCS Yên Phong: Cho a, b, c, d là các số dương. Chứng minh rằng.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.
Đề Khảo Sát Chọn HSG Toán 8 Phòng GD&ĐT Hải Hậu 2022-2023 Có Đáp Án