Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh

Nội dung Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Trà Vinh. Đề thi bao gồm hai phần: phần chung dành cho tất cả thí sinh (07 điểm) và phần tự chọn (03 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Dưới đây là một số câu hỏi trích dẫn từ đề thi: 1. Sân vận động Quốc gia Mỹ Đình (Quận Nam Từ Liêm – Hà Nội) có một sân bóng đá hình chữ nhật, chiều dài lớn hơn chiều rộng 37m và diện tích là 7140m2. Hãy tính chiều dài và chiều rộng của sân bóng đá này. 2. Một máy giặt và một tivi có tổng giá là 28,690,000 đồng. Sau khi giảm 10% cho máy giặt và 15% cho tivi, tổng giá của hai sản phẩm là 24,961,000 đồng. Hãy tính giá trị ban đầu của mỗi sản phẩm trước khi giảm giá. 3. Cho biểu thức B. Với giá trị nào của x thì B nhỏ nhất? Hãy tìm giá trị nhỏ nhất của biểu thức đó. Chúc các em học sinh thành công trong kỳ thi tuyển sinh và giữ gìn sức khỏe!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội được biên soạn nhằm giúp các em học sinh lớp 9 đang học tập tại các trường THCS trên địa bàn quận Hai Bà Trưng, Hà Nội nắm được dạng đề và rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT trong thời gian sắp tới, đề thi có lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh – Hà Nội được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 15 tháng 05 năm 2018, đề nhằm giúp các em học sinh lớp 9 làm quen với hình thức thi cử, nắm được cấu trúc đề, các dạng toán thường gặp trong đề tuyển sinh vào lớp 10 môn Toán, để các em rèn luyện, chuẩn bị cho kỳ thi vượt cấp sắp tới, đề thi có đáp án và lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mỹ Xá - Nam Định
Đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 trường THCS Mỹ Xá – Nam Định gồm 2 trang với 2 phần: phần trắc nghiệm khách quan gồm 8 câu hỏi, phần tự luận gồm 5 bài toán, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 : + Cho hình chữ nhật ABCD có AB = 3cm, CB = 4cm. Quay hình chữ nhật đó một vòng quanh cạnh AB được một hình trụ. Thể tích hình trụ đó bằng? + Giá trị của m để đường thẳng y = x – 2 và đường thẳng y = 2x + m – 1 cắt nhau tại một điểm nằm trên trục tung là? [ads] + Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Đường chéo AC và BD cắt nhau tại E. Gọi F là hình chiếu của E trên AD. Đường thẳng CF cắt đường tròn tại điểm thứ hai là M (M khác C). Gọi N là giao điểm của BD và CF. 1. Chứng minh tứ giác ABEF và tứ giác CDFE là các tứ giác nội tiếp. 2. Chứng minh FA là tia phân giác của góc BFM và BE.DN = EN.BD. 3. Gọi K là trung điểm của DE. Chứng minh tứ giác BCKF nội tiếp.
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy - Nam Định
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán THPT năm 2018 : + Cắt một hình cầu bởi một mặt phẳng cách tâm hình cầu 4dm. Biết bán kính hình cầu bằng 5dm. Chu vi mặt cắt bằng? + Cho tam giác IAB vuông tại I. Quay tam giác IAB một vòng quanh cạnh IA cố định ta được một hình? [ads] + Trong mặt phẳng tọa độ Oxy cho Parabol 2 (P): y = x^2 và đường thẳng (d): y = 4x + 1 – m. 1) Cho m = 4, hãy tìm tất cả các hoành độ giao điểm của (d) và (P). 2) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có tung độ là y1; y2 thỏa mãn √y1.√y2 = 5.